第十四次作业:手写数字识别-小数据集

1.手写数字数据集

# 1.手写数字数据集
from sklearn.datasets import load_digits
import numpy as np
digits = load_digits() # 读取手写数字数据集

2.图片数据预处理

  • x:归一化MinMaxScaler()
  • # 对X_data进行归一化MinMaxScaler
    scaler = MinMaxScaler()
    X_data = scaler.fit_transform(X_data)
    print("X_data归一化后:",X_data
  • y:独热编码OneHotEncoder()或to_categorical
  • 张量结构
  • # OneHotEncoder独热编码
    from sklearn.preprocessing import OneHotEncoder

    y = digits.target.astype(np.float32).reshape(-1,1) #将Y_data变为一列
    Y = OneHotEncoder().fit_transform(y).todense() #张量结构todense
    print("进行Y独热编码:",Y)

  • 训练集测试集划分
  • # 划分训练集和测试集
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=0,stratify=Y)
    print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)

3.设计卷积神经网络结构

  • 绘制模型结构图,并说明设计依据。
  • #3.设计卷积神经网络结构
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense,Dropout,Conv2D,MaxPool2D,Flatten
    #3、建立模型
    model = Sequential()
    ks = (3, 3)  # 卷积核的大小
    input_shape = x_train.shape[1:]
    # 一层卷积,padding='same',tensorflow会对输入自动补0
    model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))
    # 池化层1
    model.add(MaxPool2D(pool_size=(2, 2)))
    # 防止过拟合,随机丢掉连接
    model.add(Dropout(0.25))
    # 二层卷积
    model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
    # 池化层2
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    # 三层卷积
    model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
    # 四层卷积
    model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
    # 池化层3
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    # 平坦层
    model.add(Flatten())
    # 全连接层
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.25))
    # 激活函数softmax
    model.add(Dense(10, activation='softmax'))
    print(model.summary())
  •   

4.模型训练

import matplotlib.pyplot as plt
# 画图
def show_train_history(train_history, train, validation):
    plt.plot(train_history.history[train])
    plt.plot(train_history.history[validation])
    plt.title('Train History')
    plt.ylabel('train')
    plt.xlabel('epoch')
    plt.legend(['train', 'validation'], loc='upper left')
    plt.show()
 
#4.模型训练
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
train_history = model.fit(x=x_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2) #训练十次
# 准确率
show_train_history(train_history, 'accuracy', 'val_accuracy')
# 损失率
show_train_history(train_history, 'loss', 'val_loss')

 准确率:

 

 损失率:

          

5.模型评价

  • model.evaluate()
  • # 4、模型评价
    import pandas as pd
    import seaborn as sns
    score = model.evaluate(x_test,y_test)
    print("score:",score)
    # 预测值
    pre = model.predict_classes(x_test)
    print("预测值为:",pre[:10])

  • 交叉表与交叉矩阵
  • pandas.crosstab
  • seaborn.heatmap
    # 交差表与交叉矩阵
    y_test1 = np.argmax(y_test,axis=1).reshape(-1)
    y_true = np.array(y_test1)[0]
    # 交叉表查看预测数据与原数据对比
    pd.crosstab(y_true,pre,rownames=['true'],colnames=['predict'])
    # 交叉矩阵
    y_test1 = y_test1.tolist()[0]
    a = pd.crosstab(np.array(y_test1),pre,rownames=['Lables'],colnames=['Predict'])
    # 转换成dataframe
    df = pd.DataFrame(a)
    sns.heatmap(df,annot=True,cmap="Oranges",linewidths=0.2,linecolor="G")

posted @ 2020-06-10 00:30  zxf001  阅读(144)  评论(0编辑  收藏  举报