第十三次作业:深度学习-卷积

1.简述人工智能、机器学习和深度学习三者的联系与区别。

答:人工只能包括了机器学习和深度学习,而机器学习又包含了深度学习。人工智能是目的,是结果;深度学习、机器学习是方法,是工具;机器学习是一种实现人工智能的方法,机器学习直接来源于早期的人工智能领域。深度学习是一种实现机器学习的技术,深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习,给人工智能以璀璨的未来。

 

2. 全连接神经网络与卷积神经网络的联系与区别。

答: 卷积神经网络也是通过一层一层的节点组织起来的。和全连接神经网络一样,卷积神经网络中的每一个节点就是一个神经元。在全连接神经网络中,每相邻两层之间的节点都有边相连,于是会将每一层的全连接层中的节点组织成一列,这样方便显示连接结构。而对于卷积神经网络,相邻两层之间只有部分节点相连,为了展示每一层神经元的维度,一般会将每一层卷积层的节点组织成一个三维矩阵。

3.理解卷积计算。

以digit0为例,进行手工演算。

from sklearn.datasets import load_digits #小数据集8*8

digits = load_digits()

4.理解卷积如何提取图像特征。

读取一个图像;

以下矩阵为卷积核进行卷积操作;

显示卷积之后的图像,观察提取到什么特征。

 

1 0 -1
1 0 -1
1 0 -1

 

1 1 1
0 0 0
-1 -1 -1

 

-1 -1 -1
-1 8 -1
-1 -1 -1

 

卷积API

scipy.signal.convolve2d

tf.keras.layers.Conv2D

from scipy.signal import convolve2d
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np

I = Image.open(r'./data/z.jpg')  #导入图片
L = I.convert("I")

cat = np.array(I)
catg = np.array(L)

k = np.array([[-1,0,1],[-2,0,2],[-1,0,1]])
k1 = np.array([[-1,0,1],[-2,0,-2],[-1,0,1]])  # 垂直边缘检测
k2 = np.array([[1,1,1],[0,0,0],[-1,-1,-1]])   # 水平边缘
k3 = np.array([[-1,-1,-1],[-1,8,-1],[-1,-1,-1]])

cat = convolve2d(catg,k,boundary='symm',mode='same')
cat1 = convolve2d(catg,k1,boundary='symm',mode='same')
cat2 = convolve2d(catg,k2,boundary='symm',mode='same')
cat3 = convolve2d(catg,k3,boundary='symm',mode='same')

plt.imshow(cat)
plt.imshow(cat1)
plt.imshow(cat2)
plt.imshow(cat3)

图例:

cat:

 cat1: 

 

 

  cat2: .

  cat3: .

5. 安装Tensorflow,keras

 

posted @ 2020-06-01 21:47  zxf001  阅读(164)  评论(0编辑  收藏  举报