OpenCv背景分离
BS背景分离技术
BS技术即通过把当前帧与背景模型相减得到前景掩码,再将前景掩码应用到当前帧上,最终形成的背景分离的视觉效果。如下演示:
OpenCv中的BS技术
OpenCv通过使用cv::BackgroundSubtractor类创建和更新背景类,示例如下:
# coding: utf-8
import cv2 as cv
def test(algo="MOG2"):
"""
:param algo: MOG2 or KNN.
"""
# 创建背景分离对象用于生成前景掩码
if algo == "MOG2":
back_sub = cv.createBackgroundSubtractorMOG2()
else:
back_sub = cv.createBackgroundSubtractorKNN()
# 读取视频
capture = cv.VideoCapture('car.mp4')
while capture.isOpened():
ret, frame = capture.read()
if frame is None:
break
# 计算前景掩码和更新背景。
frame = cv.flip(frame, 1)
fg_mask = back_sub.apply(frame, learningRate=0.1)
# 记录帧数
cv.rectangle(frame, (10, 2), (100, 20), (255, 255, 255), -1)
cv.putText(frame, str(capture.get(cv.CAP_PROP_POS_FRAMES)), (15, 15),
cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
# 输出当前帧和背景掩码
cv.namedWindow('Frame', 0)
cv.namedWindow('FG Mask', 0)
cv.imshow("Frame", frame)
cv.imshow("FG Mask", fg_mask)
keyboard = cv.waitKey(30)
if keyboard == 'q' or keyboard == 27:
break
if __name__ == '__main__':
test("MOG2")