Sklearn_决策树_回归树

 DecisionTreeRegressor---回归树

一.重要参数

criterion:

1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为
     特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失
2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差
3)输入"mae"使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失
     属性中最重要的依然是feature_importances_,接口依然是apply, fit, predict, score最核心。

在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡
量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作
为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。

简单回归树:

from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor
boston = load_boston()   #这里使用boston数据集
regressor = DecisionTreeRegressor(random_state=0)
cross_val_score(regressor, boston.data, boston.target, cv=10,
        scoring = "neg_mean_squared_error")

交叉验证概念:

叉验证是用来观察模型的稳定性的一种方法,我们将数据划分为n份,依次使用其中一份作为测试集,其他n-1份
作为训练集,多次计算模型的精确性来评估模型的平均准确程度。训练集和测试集的划分会干扰模型的结果,因此
用交叉验证n次的结果求出的平均值,是对模型效果的一个更好的度量。

二.一维回归的图像绘制

用回归树来拟合正弦曲线,并添加一些噪声来观察回归树的表现。

 

 

 1. 导入需要的库

import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt

2. 创建一条含有噪声的正弦曲线
在这一步,我们的基本思路是,先创建一组随机的,分布在0~5上的横坐标轴的取值(x),然后将这一组值放到sin函
数中去生成纵坐标的值(y),接着再到y上去添加噪声。全程我们会使用numpy库来为我们生成这个正弦曲线。

rng = np.random.RandomState(1)
X = np.sort(5 * rng.rand(80,1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(16))
#np.random.rand(数组结构),生成随机数组的函数
#了解降维函数ravel()的用法
np.random.random((2,1))
np.random.random((2,1)).ravel()
np.random.random((2,1)).ravel().shape

3. 实例化&训练模型

regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_1.fit(X, y)
regr_2.fit(X, y)

4. 测试集导入模型,预测结果

X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)

5.绘制图像

plt.figure()
plt.scatter(X, y, s=20, edgecolor="black",c="darkorange", label="data")
plt.plot(X_test, y_1, color="cornflowerblue",label="max_depth=2", linewidth=2)
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()

 

 

 

X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]y_1 = regr_1.predict(X_test)y_2 = regr_2.predict(X_test)

posted @ 2020-05-04 21:55  孤独患者ZC7  阅读(1526)  评论(0)    收藏  举报