飞桨PaddlePaddle的安装

飞桨PaddlePaddle的安装

MacOS 下的 PIP 安装

一、环境准备

1.1 如何查看您的环境

可以使用以下命令查看本机的操作系统和位数信息:

uname -m && cat /etc/*release

确认需要安装 PaddlePaddle 的 Python 是您预期的位置,因为您计算机可能有多个 Python

使用以下命令输出 Python 路径,根据的环境您可能需要将说明中所有命令行中的 python3 替换为具体的 Python 路径

which python

需要确认 python 的版本是否满足要求

使用以下命令确认是 3.8/3.9/3.10/3.11/3.12

python3 --version

需要确认 pip 的版本是否满足要求,要求 pip 版本为 20.2.2 或更高版本

python3 -m ensurepip
python3 -m pip --version

需要确认 Python 和 pip 是 64bit,并且处理器架构是 x86_64(或称作 x64、Intel 64、AMD64)架构 或 arm64 架构(paddle 已原生支持 Mac M1 芯片):

python3 -c "import platform;print(platform.architecture()[0]);print(platform.machine())"

二、开始安装

首先请选择您的版本
目前在 MacOS 环境仅支持 CPU 版 PaddlePaddle
根据版本进行安装
确定您的环境满足条件后可以开始安装了,选择下面您要安装的 PaddlePaddle

python3 -m pip install paddlepaddle==2.6.1 -i https://mirror.baidu.com/pypi/simple

注:

  • MacOS 上您需要安装 unrar 以支持 PaddlePaddle,可以使用命令brew install unrar

  • 请确认需要安装 PaddlePaddle 的 Python 是您预期的位置,因为您计算机可能有多个 Python。根据您的环境您可能需要将说明中所有命令行中的 python3 替换为具体的 Python 路径。

  • 默认下载最新稳定版的安装包,如需获取 develop 版本 nightly build 的安装包,请参考这里

  • 使用 MacOS 中自带 Python 可能会导致安装失败。请使用python 官网提供的 python3.8.x、python3.9.x、python3.10.x、python3.11.x、python3.12.x。

  • 上述命令默认安装avx、mkl的包,判断你的机器是否支持avx,可以输入以下命令,如果输出中包含avx,则表示机器支持avx。飞桨不再支持noavx指令集的安装包。

sysctl machdep.cpu.features | grep -i avx

sysctl machdep.cpu.leaf7_features | grep -i avx

三、验证安装

安装完成后您可以使用 python 进入 python 解释器,输入import paddle ,再输入 paddle.utils.run_check()
如果出现PaddlePaddle is installed successfully!,说明您已成功安装。
image

具体安装教程参考飞桨官网:https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/macos-pip.html

Windows 下的 PIP 安装

需要确认 Python 和 pip 是 64bit,并且处理器架构是 x86_64(或称作 x64、Intel 64、AMD64)架构。下面的第一行输出的是”64bit”,第二行输出的是”x86_64”、”x64”或”AMD64”即可:

python -c "import platform;print(platform.architecture()[0]);print(platform.machine())"

默认提供的安装包需要计算机支持 MKL
Windows 暂不支持 NCCL,分布式等相关功能
首先请您选择您的版本

  • 如果您的计算机没有 NVIDIA® GPU,请安装CPU 版的 PaddlePaddle

  • 如果您的计算机有 NVIDIA® GPU,请确保满足以下条件并且安装 GPU 版 PaddlePaddle

    • CUDA 工具包 11.2 配合 cuDNN v8.2.1,如需使用 PaddleTensorRT 推理,需配合 TensorRT8.2.4.2

    • CUDA 工具包 11.6 配合 cuDNN v8.4.0,如需使用 PaddleTensorRT 推理,需配合 TensorRT8.4.0.6

    • CUDA 工具包 11.7 配合 cuDNN v8.4.1,如需使用 PaddleTensorRT 推理,需配合 TensorRT8.4.2.4

    • CUDA 工具包 11.8 配合 cuDNN v8.6.0,如需使用 PaddleTensorRT 推理,需配合 TensorRT8.5.1.7

    • CUDA 工具包 12.0 配合 cuDNN v8.9.1, 如需使用 PaddleTensorRT 推理,需配合 TensorRT8.6.1.6

    • GPU 运算能力超过 3.5 的硬件设备

注:目前官方发布的 windows 安装包仅包含 CUDA 11.2/11.6/11.7/11.8/12.0,如需使用其他 cuda 版本,请通过源码自行编译。您可参考 NVIDIA 官方文档了解 CUDA、CUDNN 和 TensorRT 的安装流程和配置方法,请见CUDA,cuDNN,TensorRT

根据版本进行安装
确定您的环境满足条件后可以开始安装了,选择下面您要安装的 PaddlePaddle
2.1 CPU 版的 PaddlePaddle

python -m pip install paddlepaddle==2.6.1 -i https://mirror.baidu.com/pypi/simple

2.2 GPU 版的 PaddlePaddle
2.2.1 CUDA11.2 的 PaddlePaddle

python -m pip install paddlepaddle-gpu==2.6.1.post112 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html

2.2.2 CUDA11.6 的 PaddlePaddle

python -m pip install paddlepaddle-gpu==2.6.1.post116 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html

2.2.3 CUDA11.7 的 PaddlePaddle

python -m pip install paddlepaddle-gpu==2.6.1.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html

2.2.4 CUDA11.8 的 PaddlePaddle

python -m pip install paddlepaddle-gpu==2.6.1 -i https://mirror.baidu.com/pypi/simple

2.2.5 CUDA12.0 的 PaddlePaddle

python -m pip install paddlepaddle-gpu==2.6.1.post120 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html

注:

请确认需要安装 PaddlePaddle 的 Python 是您预期的位置,因为您计算机可能有多个 Python。根据您的环境您可能需要将说明中所有命令行中的 python 替换为具体的 Python 路径。
上述命令默认安装avx、mkl的包。判断你的机器是否支持avx,可以安装CPU-Z工具查看“处理器-指令集”。飞桨不再支持noavx指令集的安装包。
如果你想安装avx、openblas的 Paddle 包,可以通过以下命令将 wheel 包下载到本地,再使用python -m pip install [name].whl本地安装([name]为 wheel 包名称)

python -m pip download paddlepaddle==2.6.1 -f https://www.paddlepaddle.org.cn/whl/windows/openblas/avx/stable.html --no-index --no-deps

具体安装教程参考飞桨官网:https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/windows-pip.html

Linux 下的 PIP 安装

需要确认 Python 和 pip 是 64bit,并且处理器架构是 x86_64(或称作 x64、Intel 64、AMD64)架构。下面的第一行输出的是”64bit”,第二行输出的是”x86_64”、”x64”或”AMD64”即可

python3 -c "import platform;print(platform.architecture()[0]);print(platform.machine())"

开始安装

首先请选择您的版本

  • 如果您的计算机没有 NVIDIA® GPU,请安装CPU 版的 PaddlePaddle

  • 如果您的计算机有 NVIDIA® GPU,请确保满足以下条件并且安装GPU 版 PaddlePaddle,依赖库环境版本要求如下:

    • CUDA 工具包 11.2 配合 cuDNN v8.2.1, 如需使用 PaddleTensorRT 推理,需配合 TensorRT8.0.3.4

    • CUDA 工具包 11.6 配合 cuDNN v8.4.0, 如需使用 PaddleTensorRT 推理,需配合 TensorRT8.4.0.6

    • CUDA 工具包 11.7 配合 cuDNN v8.4.1, 如需使用 PaddleTensorRT 推理,需配合 TensorRT8.4.2.4

    • CUDA 工具包 11.8 配合 cuDNN v8.6.0, 如需使用 PaddleTensorRT 推理,需配合 TensorRT8.5.1.7

    • CUDA 工具包 12.0 配合 cuDNN v8.9.1, 如需使用 PaddleTensorRT 推理,需配合 TensorRT8.6.1.6

    • 如需使用分布式多卡环境,需配合 NCCL>=2.7

    • GPU 运算能力超过 6.0 的硬件设备

您可参考 NVIDIA 官方文档了解 CUDA、CUDNN 和 TensorRT 的安装流程和配置方法,请见CUDA,cuDNN,TensorRT

如果您需要使用多卡环境请确保您已经正确安装 nccl2,或者按照以下指令安装 nccl2(这里提供的是 CUDA11.2,cuDNN7 下 nccl2 的安装指令,更多版本的安装信息请参考 NVIDIA官方网站):

rm -f /usr/local/lib/libnccl.so
wget --no-check-certificate -q https://nccl2-deb.cdn.bcebos.com/libnccl-2.10.3-1+cuda11.4.x86_64.rpm
wget --no-check-certificate -q https://nccl2-deb.cdn.bcebos.com/libnccl-devel-2.10.3-1+cuda11.4.x86_64.rpm
wget --no-check-certificate -q https://nccl2-deb.cdn.bcebos.com/libnccl-static-2.10.3-1+cuda11.4.x86_64.rpm
rpm -ivh libnccl-2.10.3-1+cuda11.4.x86_64.rpm
rpm -ivh libnccl-devel-2.10.3-1+cuda11.4.x86_64.rpm
rpm -ivh libnccl-static-2.10.3-1+cuda11.4.x86_64.rpm

2.1 CPU 版的 PaddlePaddle

python3 -m pip install paddlepaddle==2.6.1 -i https://mirror.baidu.com/pypi/simple

2.2 GPU 版的 PaddlePaddle
2.2.1 CUDA11.2 的 PaddlePaddle

python3 -m pip install paddlepaddle-gpu==2.6.1.post112 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
# CUDA11.2 包含 cuDNN 动态链接库的 PaddlePaddle
python3 -m pip install paddlepaddle-gpu==2.6.1.post112 -f https://www.paddlepaddle.org.cn/whl/linux/cudnnin/stable.html

2.2.3 CUDA11.6 的 PaddlePaddle

python3 -m pip install paddlepaddle-gpu==2.6.1.post116 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
# CUDA11.6 包含 cuDNN 动态链接库的 PaddlePaddle
python3 -m pip install paddlepaddle-gpu==2.6.1.post116 -f https://www.paddlepaddle.org.cn/whl/linux/cudnnin/stable.html

2.2.4 CUDA11.7 的 PaddlePaddle

python3 -m pip install paddlepaddle-gpu==2.6.1.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
# CUDA11.7 包含 cuDNN 动态链接库的 PaddlePaddle
python3 -m pip install paddlepaddle-gpu==2.6.1.post117 -f https://www.paddlepaddle.org.cn/whl/linux/cudnnin/stable.html

2.2.5 CUDA11.8 的 PaddlePaddle

python3 -m pip install paddlepaddle-gpu==2.6.1 -i https://mirror.baidu.com/pypi/simple
# CUDA11.8 包含 cuDNN 动态链接库的 PaddlePaddle,需要先使用如下命令将 wheel 包下载到本地,再使用`python3 -m pip install [name].whl`本地安装([name]为 wheel 包名称):
python3 -m pip download paddlepaddle-gpu==2.6.1 -f https://www.paddlepaddle.org.cn/whl/linux/cudnnin/stable.html --no-index --no-deps

2.2.6 CUDA12.0 的 PaddlePaddle

python3 -m pip install paddlepaddle-gpu==2.6.1.post120 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
# CUDA12.0 包含 cuDNN 动态链接库的 PaddlePaddle
python3 -m pip install paddlepaddle-gpu==2.6.1.post120 -f https://www.paddlepaddle.org.cn/whl/linux/cudnnin/stable.html

注:

飞桨对于主流各 python 版本均提供了对应的安装包,而您环境中可能有多个 Python,请确认你想使用的 python 版本并下载对应的 paddlepaddle 安装包。例如您想使用 python3.10 的环境,则安装命令为 python3.10 -m pip install paddlepaddle。
上述命令默认安装avx、mkl的包。判断你的机器是否支持avx,可以输入以下命令,如果输出中包含avx,则表示机器支持avx。飞桨不再支持noavx指令集的安装包。

cat /proc/cpuinfo | grep -i avx

如果你想安装avx、openblas的 Paddle 包,可以通过以下命令将 wheel 包下载到本地,再使用python3 -m pip install [name].whl本地安装([name]为 wheel 包名称):

python3 -m pip download paddlepaddle==2.6.1 -f https://www.paddlepaddle.org.cn/whl/linux/openblas/avx/stable.html --no-index --no-deps

具体安装教程参考飞桨官网:https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html

四、如何卸载
请使用以下命令卸载 PaddlePaddle:

  • CPU 版本的 PaddlePaddle: python3 -m pip uninstall paddlepaddle

  • GPU 版本的 PaddlePaddle: python3 -m pip uninstall paddlepaddle-gpu

posted @   Rescal_子轩  阅读(365)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 【杭电多校比赛记录】2025“钉耙编程”中国大学生算法设计春季联赛(1)
点击右上角即可分享
微信分享提示