相关分析(一)-百度百科
简介:
变量与变量之间的关系常见的有两类:一类是确定性的函数关系,像正方形边长和面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是随机性的。当两个相互关系的量具有这两种变量关系的时候,就称两个变量具有相关关系。
相关分析是描述客观事物相互间关系的密切程度并用适当的统计指标表示出来的过程。在一段时期内出生率随经济水平上升而上升,这说明两指标间是正相关关系;而在另一时期,随着经济水平进一步发展,出现出生率下降的现象,两指标间就是负相关关系。
为了确定相关变量之间的关系,首先应该收集一些数据,这些数据应该是成对的。例如,每人的身高和体重。然后在直角坐标系上描述这些点,这一组点集称为“散点图”。
根据散点图,当自变量取某一值时,因变量对应为一概率分布,如果对于所有的自变量取值的概率分布都相同,则说明因变量和自变量是没有相关关系的。反之,如果,自变量的取值不同,因变量的分布也不同,则说明两者是存在相关关系的。
两个变量之间的相关程度通过相关系数r来表示。相关系数r的值在-1和1之间,但可以是此范围内的任何值。正相关时,r值在0和1之间,散点图是斜向上的,这时一个变量增加,另一个变量也增加;负相关时,r值在-1和0之间,散点图是斜向下的,此时一个变量增加,另一个变量将减少。r的绝对值越接近1,两变量的关联程度越强,r的绝对值越接近0,两变量的关联程度越弱。
分类:
1、按相关的程度分为完全相关、不完全相关和不相关
1)两种依存关系的标志,其中一个标志的数量变化由另一个标志的数量变化所确定,则称完全相关,也称函数关系。
2)两个标志彼此互不影响,其数量变化各自独立,称为不相关。
3)两个现象之间的关系,介乎完全相关与不相关之间称不完全相关。
2、按相关的方向分为正相关和负相关
1)正相关指相关关系表现为因素标志和结果标志的数量变动方向一致。
2)负相关指相关关系表现为因素标志和结果标志的数量变动方向是相反的。
3、按相关的形式分为线性相关和非线性相关
一种现象的一个数值和另一现象相应的数值在直角坐标系中确定为一个点,称为线性相关。
4、按影响因素的多少分为单相关和复相关
1)如果研究的是一个结果标志同某一因素标志相关,就称单相关。
2)如果分析若干因素标志对结果标志的影响,称为复相关或多元相关。
相关关系:
相关分析与回归分析在实际应用中有密切关系。然而在回归分析中,所关心的是一个随机变量Y对另一个(或一组)随机变量X的依赖关系的函数形式。而在相关分析中 ,所讨论的变量的地位一样,分析侧重于随机变量之间的种种相关特征。例如,以X、Y分别记小学生的数学与语文成绩,感兴趣的是二者的关系如何,而不在于由X去预测Y。
确定相关关系的存在,相关关系呈现的形态和方向,相关关系的密切程度。其主要方法是绘制相关图表和计算相关系数。
1)相关表
2)相关图
利用直角坐标系第一象限,把自变量置于横轴上,因变量置于纵轴上,而将两变量相对应的变量值用坐标点形式描绘出来,用以表明相关点分布状况的图形。相关图被形象地称为相关散点图。因素标志分了组,结果标志表现为组平均数,所绘制的相关图就是一条折线,这种折线又叫相关曲线。
3)相关系数