矩阵乘法 POJ3070 Fibonacci

Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 15215   Accepted: 10687

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

Source

 
复制代码
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 using namespace std;
 6 int n,a[2][2],b[2][2];
 7 void mul(int a[2][2],int b[2][2],int ans[2][2]){
 8     int t[2][2];
 9     for(int i=0;i<2;i++)
10         for(int j=0;j<2;j++){
11             t[i][j]=0;
12             for(int k=0;k<2;k++) t[i][j]=(t[i][j]+a[i][k]*b[k][j])%10000; 
13         }
14     for(int i=0;i<2;i++)
15         for(int j=0;j<2;j++) ans[i][j]=t[i][j];
16 } 
17 int main(){
18     while(scanf("%d",&n)){
19         if(n==-1) return 0;
20         a[0][0]=a[1][0]=a[0][1]=b[0][0]=b[1][1]=1;
21         a[1][1]=b[1][0]=b[0][1]=0;
22         while(n){
23             if(n&1) mul(a,b,b);
24             n>>=1;
25             mul(a,a,a);
26         }
27         printf("%d\n",b[1][0]);
28     }
29     return 0;
30 }
复制代码

 

posted @   zwube  阅读(150)  评论(0编辑  收藏  举报
编辑推荐:
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
阅读排行:
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 《HelloGitHub》第 106 期
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用
点击右上角即可分享
微信分享提示