《期望与概率练习》
写着写着拿出了我的概率论书(哭
连续性随机变量X的期望:$E[X] = \sum_{x = -INF}^{INF} x * f(x) dx $ - f(x)为概率密度.
https://www.luogu.com.cn/problem/P4316:
一开始写了个暴力,结果过了?可能DAG不太好卡暴力吧。
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int,int> pii; typedef pair<LL,double> pii2; const int N = 1e5 + 5; const int M = 1e6 + 5; const LL Mod = 1e9 + 7; #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } vector<pii> G[N]; vector<pii2> vec[N]; int in[N]; void solve() { int n,m;scanf("%d %d",&n,&m); while(m--) { int u,v,w;scanf("%d %d %d",&u,&v,&w); G[u].push_back(pii{v,w}); in[v]++; } queue<int> Q; Q.push(1); vec[1].push_back(pii2{0,1}); while(!Q.empty()) { int u = Q.front(); Q.pop(); double p = 1.0 / G[u].size(); for(auto v : G[u]) { in[v.first]--; for(auto tt : vec[u]) { vec[v.first].push_back(pii2{tt.first + v.second,tt.second * p}); } if(in[v.first] == 0) Q.push(v.first); } } double ans = 0; for(auto v : vec[n]) ans += v.first * v.second; printf("%.2f\n",ans); } int main() { solve(); //system("pause"); return 0; }
正解:考虑期望dp。
因为是从1 -> n,所以可以定义dp[i] = i走到n的期望路径长度。
那么显然可以有dp[n] = 0,所以很显然我们要逆推,所以要建反图。
$dp[u] = \sum (dp[v] + w[u -> v]) * p$需要注意的是这里的p应该是v到u的概率,因为虽然我们是逆推的,但是实际上我们是正着走的。
然后也不难理解,如果转移成功能获得的贡献是$dp[v] + w[u -> v]$
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int,int> pii; typedef pair<LL,double> pii2; const int N = 1e5 + 5; const int M = 1e6 + 5; const LL Mod = 1e9 + 7; #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } vector<pii> G[N]; int in[N],sz[N]; double dp[N]; void solve() { int n,m;scanf("%d %d",&n,&m); while(m--) { int u,v,w;scanf("%d %d %d",&u,&v,&w); G[v].push_back(pii{u,w}); in[u]++,sz[u]++; } queue<int> Q; Q.push(n); dp[n] = 0; while(!Q.empty()) { int u = Q.front(); Q.pop(); for(auto v : G[u]) { in[v.first]--; dp[v.first] += (dp[u] + v.second) * (1.0 / sz[v.first]); if(in[v.first] == 0) Q.push(v.first); } } printf("%.2f\n",dp[1]); } int main() { solve(); //system("pause"); return 0; }
https://www.luogu.com.cn/problem/P5104:
这么大的数据只能基于矩阵快速幂去考虑,但是由于这里是对于连续形状随机变量而言,也不好dp。
我们首先可以计算第一个取的人的期望钱数.$E1 = \sum_{x = 0}^{w} x \frac{1}{w} dx = \frac{1}{2} w$
因为E1 = w / 2,所以w - E1 = E1
我们继续第二个人的期望钱数$E2 = \sum_{x = 0}^{E1} x \frac{1}{E1} dx = \frac{1}{2} E1$
由此可见后面的递推都是1 / 2,那么可得第k个人的期望钱数 = w / 2 ^ k
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int,int> pii; typedef pair<LL,double> pii2; const int N = 1e5 + 5; const int M = 1e6 + 5; const LL Mod = 1e9 + 7; #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } LL quick_mi(LL a,LL b) { LL re = 1; while(b) { if(b & 1) re = re * a % Mod; a = a * a % Mod; b >>= 1; } return re; } void solve() { LL w,n,k;scanf("%lld %lld %lld",&w,&n,&k); LL ma = quick_mi(2,k); LL ans = MUL(w,quick_mi(ma,Mod - 2)); printf("%lld\n",ans); } int main() { solve(); system("pause"); return 0; }
https://www.luogu.com.cn/problem/P6154:
$DAG上的随机游走:考虑每条边的贡献即可。$
$对于一条边u -> v,经过这条边的路径数cnt = 原图拓扑到u的次数 * 反图拓扑到v的次数$
$然后每条路径的期望就是 1 * (cnt / sum)$
$这个sum我们只需要第一遍拓扑的时候处理出来即可$
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int,int> pii; typedef pair<LL,double> pii2; const int N = 1e5 + 5; const int M = 1e6 + 5; const LL Mod = 998244353; #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } LL quick_mi(LL a,LL b) { LL re = 1; while(b) { if(b & 1) re = re * a % Mod; a = a * a % Mod; b >>= 1; } return re; } LL dp[N],dp2[N],sum = 0; int in[N],de[N]; vector<int> G[N],RG[N]; void solve() { int n,m;scanf("%d %d",&n,&m); while(m--) { int x,y;scanf("%d %d",&x,&y); G[x].push_back(y); RG[y].push_back(x); in[y]++,de[x]++; } queue<int> Q; for(int i = 1;i <= n;++i) { dp2[i] = 1; if(de[i] == 0) Q.push(i); } while(!Q.empty()) { int u = Q.front(); sum = ADD(sum,dp2[u]); Q.pop(); for(auto v : RG[u]) { dp2[v] = ADD(dp2[v],dp2[u]); de[v]--; if(de[v] == 0) Q.push(v); } } for(int i = 1;i <= n;++i) { dp[i] = 1; if(in[i] == 0) Q.push(i); } LL ans = 0; while(!Q.empty()) { int u = Q.front(); Q.pop(); for(auto v : G[u]) { ans = ADD(ans,MUL(MUL(dp[u],dp2[v]),quick_mi(sum,Mod - 2))); dp[v] = ADD(dp[v],dp[u]); in[v]--; if(in[v] == 0) Q.push(v); } } printf("%lld\n",ans); } int main() { solve(); system("pause"); return 0; }
https://www.luogu.com.cn/problem/P1297:
$不知道为什么这题感觉还是有些难度的,但是我一看到就想到了做法$
$dp[i]表示做了i道题的期望做对题数,递推式:dp[i] = dp[i - 1] + min(a[i],a[i + 1]) / (a[i] * a[i + 1])$
$并不是很难想,相邻的一共答案对应情况有a[i] * a[i + 1]种,并且其中正确的只有min(a[i],a[i + 1])种$
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int,int> pii; typedef pair<LL,double> pii2; const int N = 1e7 + 5; const int M = 1e6 + 5; const LL Mod = 998244353; #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } int n,A,B,C,a[N]; void Input() { scanf("%d%d%d%d%d", &n, &A, &B, &C, a + 1); for (int i = 2; i <= n; i++) a[i] = ((long long) a[i - 1] * A + B) % 100000001; for (int i = 1; i <= n; i++) a[i] = a[i] % C + 1; } double dp[N];//做了i道题的期望做对题数 void solve() { Input(); for(int i = 1;i <= n;++i) { if(i == n) { dp[i] = dp[i - 1] + 1.0 * min(a[i],a[1]) / (1LL * a[i] * a[1]); } else { dp[i] = dp[i - 1] + 1.0 * min(a[i],a[i + 1]) / (1LL * a[i] * a[i + 1]); } } printf("%.3f\n",dp[n]); } int main() { solve(); system("pause"); return 0; }
https://www.luogu.com.cn/problem/P1291:
$这里就写一下思路了,因为输出太毒瘤了就不写了$
$很显然有一个dp[i] - 抽到i个不同球星的期望次数$
$定义dp[i + 1] = dp[i] + x$
$那么我们可以有第二种转移方式dp[i + 1] = dp[i] + 1 * (n - i / n) + (x + 1) * (i / n)$
$可以由x = 1 * (n - i / n) + (x + 1) * (i / n),解得 x = n / (n - i),所以可得dp[i + 1] = dp[i] + n / (n - i)$
https://www.luogu.com.cn/problem/CF1042E:
$虽然这里看起来是个矩阵图,但是大的往小的连边后,其实就是一个有起点的DAG游走$
$但是这里如果真的要连边那么复杂度吃不消,因为这里它一定会向小的连边,所以我们可以对所有点的权值排序$
$那么就类似一条x坐标轴,显然有dp[i] - 到i点的期望分数。但是这个题如果要正向推,那么化简就会比较麻烦,所以我们考虑逆推$
$dp[i]表示到所有终点的期望分数。那么有 dp[i] = \sum_{a[j] > a[i]}^{} dp[j] + (xi - xj) ^ 2 + (yi - yj) ^ 2$
$里面拆开后可以前缀和优化,就卡在这里化简老是不对..$
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int,int> pii; const int N = 1e3 + 5; const int M = 1e6 + 5; const LL Mod = 998244353; #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } int a[N][N]; LL dp[N * N];//走到第i个点的期望分数 LL quick_mi(LL a,LL b) { LL re = 1; while(b) { if(b & 1) re = re * a % Mod; a = a * a % Mod; b >>= 1; } return re; } struct Node{LL x,y,z;}; vector<Node> vec; bool cmp(Node a,Node b) { return a.z < b.z; } LL f[N * N]; LL num,numx,numy,numx2,numy2; LL nownum,nownumx,nownumy,nownumx2,nownumy2; LL sumf,nowsumf; void solve() { int n,m;scanf("%d %d",&n,&m); for(int i = 1;i <= n;++i) for(int j = 1;j <= m;++j) scanf("%d",&a[i][j]); int x,y;scanf("%d %d",&x,&y); int mi = INF; for(int i = 1;i <= n;++i) { for(int j = 1;j <= m;++j) { if(a[i][j] < a[x][y]) vec.push_back(Node{i,j,a[i][j]}),mi = min(mi,a[i][j]); } } vec.push_back(Node{x,y,a[x][y]}); sort(vec.begin(),vec.end(),cmp); n = vec.size(); for(int i = 1;i <= n;++i) { f[i] = quick_mi(i,Mod - 2);//1 / i } for(int i=1;i<=n;i++){ if(i == 1 || vec[i - 1].z != vec[i - 2].z){ num+=nownum;numx+=nownumx;numy+=nownumy; numx2+=nownumx2;numy2+=nownumy2; nownum=nownumx=nownumy=nownumx2=nownumy2=0; sumf+=nowsumf;nowsumf = 0; } dp[i] = (num * (vec[i - 1].x * vec[i - 1].x + vec[i - 1].y * vec[i - 1].y) % Mod + numx2 + numy2 -2 * vec[i - 1].x*numx%Mod-2*vec[i - 1].y*numy%Mod+sumf)%Mod*f[num]%Mod; nownum++; nownumx += vec[i - 1].x;nownumy += vec[i - 1].y; nownumx2 += vec[i - 1].x * vec[i - 1].x; nownumy2 += vec[i - 1].y * vec[i - 1].y; nowsumf += dp[i]; nownumx %= Mod; nownumy %= Mod; nownumx2 %= Mod; nownumy2 %= Mod; nowsumf %= Mod; } printf("%lld\n",dp[n]); } int main() { solve(); //system("pause"); return 0; }
https://www.luogu.com.cn/problem/P1850:
$这题其实非常不错,很显然有dp[i][j][k] - 到第i个申请了j次,k 0/1 - 前面一个有没有申请.$
$这里的转移瓶颈就在于前面一个如果申请了,那么我们就不知道它会在哪里,因为有可能失败。$
$这里其实我们只需要把申请成功的代价 和 申请失败的 都加上就好了,并不需要去真正关心它的前面一个位置。$
$这里需要注意的是概率需要满足两个如果两个都申请了,那就是乘法原则计算概率。$
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int,int> pii; const int N = 2e3 + 5; const int M = 1e6 + 5; const LL Mod = 998244353; #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } int n,m,v,e,c[N],d[N]; double k[N]; int dis[305][305]; double dp[N][N][2];//dp[i][j][k] - 到i个时间段,申请了j个的最小期望体力花费,k - 0这一次没有申请,1 - 申请了 void Floyd() { for(int kk = 1;kk <= v;++kk) { for(int i = 1;i <= v;++i) { for(int j = 1;j <= v;++j) { dis[i][j] = min(dis[i][j],dis[i][kk] + dis[kk][j]); } } } } void solve() { scanf("%d %d %d %d",&n,&m,&v,&e); for(int i = 1;i <= n;++i) scanf("%d",&c[i]); for(int i = 1;i <= n;++i) scanf("%d",&d[i]); for(int i = 1;i <= n;++i) cin >> k[i]; memset(dis,0x3f3f3f,sizeof(dis)); for(int i = 1;i <= v;++i) dis[i][i] = 0; while(e--) { int u,v,w;scanf("%d %d %d",&u,&v,&w); dis[v][u] = dis[u][v] = min(dis[u][v],w); } Floyd(); for(int i = 0;i <= n;++i) for(int j = 0;j <= m;++j) for(int k = 0;k < 2;++k) dp[i][j][k] = INF; double ans = INF; dp[1][0][0] = dp[1][1][1] = 0; for(int i = 2;i <= n;++i) { for(int j = 0;j <= m;++j) { int d1 = dis[c[i - 1]][c[i]],d2 = dis[d[i - 1]][c[i]],d3 = dis[c[i - 1]][d[i]],d4 = dis[d[i - 1]][d[i]]; dp[i][j][0] = min(dp[i][j][0],dp[i - 1][j][0] + d1); dp[i][j][0] = min(dp[i][j][0],dp[i - 1][j][1] + k[i - 1] * d2 + (1 - k[i - 1]) * d1); if(j > 0) { dp[i][j][1] = min(dp[i][j][1],dp[i - 1][j - 1][0] + k[i] * d3 + (1 - k[i]) * d1); dp[i][j][1] = min(dp[i][j][1],dp[i - 1][j - 1][1] + k[i - 1] * k[i] * d4 + (1 - k[i - 1]) * (1 - k[i]) * d1 + k[i - 1] * (1 - k[i]) * d2 + (1 - k[i - 1]) * k[i] * d3); } if(i == n) ans = min(ans,min(dp[i][j][0],dp[i][j][1])); } } if(n == 1) printf("0.00\n"); else printf("%.2f\n",ans); } int main() { solve(); // system("pause"); return 0; }
https://www.luogu.com.cn/problem/P1365:
$这题有点抽象,显然我们要计算的就是一连串?o组合的期望值。$
$可以考虑我们目前的o长度为len,价值为len ^ 2:$
$如果下一个为o,那么价值为(len + 1) ^ 2 - len ^ 2 = 2 * len + 1$
$如果下一个为?,我们需要考虑为x的代价 = 0,为o的代价 = 2 * len + 1$
$出现o的概率为1 / 2,那么我们可以获得的期望代价就是(2 * len + 1) / 2 = len + 0.5$
$就这样处理连续一段即可,需要注意的是len 在是 ?时应该加为 (len + 1) / 2$
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef long double ld; typedef pair<int,int> pii; const int N = 3e5 + 5; const int M = 1e6 + 5; const LL Mod = 998244353; #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } int n; double dp[N];//dp[i] - 到第i个字符的期望分数. void solve() { scanf("%d",&n); string s;cin >> s; double len = 0; for(int i = 1;i <= n;++i) { if(s[i - 1] == 'x') dp[i] = dp[i - 1],len = 0; else if(s[i - 1] == 'o') { dp[i] = dp[i - 1] + 2 * len + 1,++len; } else { dp[i] = dp[i - 1] + len + 0.5,len = (len + 1) / 2; } } printf("%.4f\n",dp[n]); } int main() { solve(); // system("pause"); return 0; }
https://www.luogu.com.cn/problem/P6046:
$我们考虑单独一个点的情况,首先,它要被杀掉那肯定是左边最近的和右边最近的位置来。$
$其实就有一个比较自然的想法,E[x] = \sum_{i = 1}^{n - 1}i * p[i],p[i] - 恰好活了i轮的概率$
$但是这里恰好的概率很难算,所以就有一个新的期望计算式子E[i] = \sum_{i = 1}^{n - 1}P[x >= i],P[i] - 存活轮数 >= i轮的概率$
$然后我们来考虑存活概率>= i轮的概率,首先i位置和前面最近大于它的位置距离为pre,和后面最近大于它的位置为nxt:$
$要杀了i,一种就是j轮里选完了pre,即C(n - 1 - pre,j - pre) / C(n - 1,j) 即n - 1 - pre个位置里选j - pre个$
$然后右边选完了nxt同理,因为这两者都计算了选完了pre并且选完了nxt的情况,所以要容斥一下减去P(pre & nxt)$
$所以P = 1 - P(pre) - P(nxt) + P(pre & nxt)$
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef long double ld; typedef pair<int,int> pii; const int N = 3e5 + 5; const int M = 1e6 + 5; const LL Mod = 998244353; #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } int a[55],L[55],r[55]; LL dp[55],C[55][55]; LL quick_mi(LL a,LL b) { LL re = 1; while(b) { if(b & 1) re = re * a % Mod; a = a * a % Mod; b >>= 1; } return re; } void solve() { int n;scanf("%d",&n); for(int i = 1;i <= n;++i) scanf("%d",&a[i]),L[i] = r[i] = -1; for(int i = 1;i <= n;++i) { for(int j = i + 1;j <= n;++j) { if(a[j] > a[i]) {r[i] = j;break;} } for(int j = i - 1;j >= 1;--j) { if(a[j] > a[i]) {L[i] = j;break;} } } C[0][0] = 1; for(int i = 1;i <= 50;++i) { C[i - 1][0] = 1; for(int j = 1;j <= 50;++j) { C[i][j] = ADD(C[i - 1][j],C[i - 1][j - 1]); } } for(int i = 1;i <= n;++i) { int d1 = -1,d2 = -1; if(L[i] != -1) d1 = i - L[i]; if(r[i] != -1) d2 = r[i] - i; if(a[i] == n) {dp[i] = n - 1;continue;} LL tmp = 0; for(int j = 1;j <= n - 1;++j) { LL p = 1; LL p1 = MUL(C[n - 1 - d1][j - d1],quick_mi(C[n - 1][j],Mod - 2)); LL p2 = MUL(C[n - 1 - d2][j - d2],quick_mi(C[n - 1][j],Mod - 2)); LL p3 = MUL(C[n - 1 - d1 - d2][j - d1 - d2],quick_mi(C[n - 1][j],Mod - 2)); if(d1 != -1 && d2 != -1) p = 1 - p1 - p2 + p3; else if(d1 != -1) p = 1 - p1; else if(d2 != -1) p = 1 - p2; p %= Mod; p = (p + Mod) % Mod; tmp = ADD(tmp,p); } dp[i] = tmp; } for(int i = 1;i <= n;++i) printf("%lld%c",dp[i],i == n ? '\n' : ' '); } int main() { solve(); // system("pause"); return 0; }
https://www.luogu.com.cn/problem/CF453A:
$这题其实不难,主要瓶颈在于计算选了k轮最大值为i的概率$
$这里就要用到容斥来算了,真的很妙$
$投了n轮,全在1 ~ i - 1的概率 = (i - 1 / m) ^ n,投了n轮,全在1 ~ i的概率 = (i / m) ^ n,显然最大值为i的概率 = (i / m) ^ n - (i - 1 / m) ^ n$
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef long double ld; typedef pair<int,int> pii; const int N = 3e5 + 5; const int M = 1e6 + 5; const LL Mod = 998244353; #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } LL quick_mi(LL a,LL b) { LL re = 1; while(b) { if(b & 1) re = re * a; a = a * a; b >>= 1; } return re; } void solve() { int m,n;scanf("%d %d",&m,&n); double ans = 0; for(int i = 1;i <= m;++i) { double ma = 1.0 * i * (pow(1.0 * i / m,n) - pow(1.0 * (i - 1) / m,n)); ans += ma; } printf("%.10f\n",ans); } int main() { solve(); // system("pause"); return 0; }
https://www.luogu.com.cn/problem/P3802:
这题有点玄妙了。我们可以求得前7个组成的概率a1 / n * a2 / (n - 1) * a3 / (n - 2) * a4 / (n - 3) * a5 / (n - 4) * a6 / (n - 5) * a7 / (n - 6)
然后因为期望具有线性可加性,E[8] = E[7] + E[1] = E[7],以此类推得出E[x > 7] = E[7],所以最后答案就是(n - 6) * E[7].
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef long double ld; typedef pair<int,int> pii; const int N = 3e5 + 5; const int M = 1e6 + 5; const LL Mod = 998244353; #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } int a[10]; void solve() { int n = 0; for(int i = 1;i <= 7;++i) scanf("%d",&a[i]),n += a[i]; if(n < 7) printf("0.000\n"); else { double ans = 1,f = 1,f2 = 1; for(int i = 1;i <= 7;++i) { double ma = a[i] * 1.0 / (n - i + 1); ans *= ma; } LL ma = 1; for(int i = 1;i <= 7;++i) ma *= i; ans = ans * ma; ans *= (n - 6); printf("%.3f\n",ans); } } int main() { solve(); // system("pause"); return 0; }
https://www.luogu.com.cn/problem/CF16E:
这里正着推的状压,不能找到问题。
所以要倒着推,然后注意中间还要乘上存活集合为i里选中2条鱼的概率。
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef long double ld; typedef pair<int,int> pii; const int N = 3e5 + 5; const int M = 1e6 + 5; const LL Mod = 998244353; #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } double a[18][18],dp[1 << 18];//dp[i] - 集合i里的鱼都存活的概率 int cnt[1 << 18]; void solve() { int n;scanf("%d",&n); for(int i = 0;i < (1 << n);++i) { int k = 0; for(int j = 0;j < n;++j) { if(((i >> j) & 1) == 1) k++; } cnt[i] = k; } for(int i = 0;i < n;++i) { for(int j = 0;j < n;++j) scanf("%lf",&a[i][j]); } memset(dp,0,sizeof(dp)); dp[(1 << n) - 1] = 1; for(int i = (1 << n) - 2;i >= 0;--i) { for(int j = 0;j < n;++j) { if(((i >> j) & 1) == 0) continue; for(int k = 0;k < n;++k) { if(((i >> k) & 1) == 0) { dp[i] += dp[i | (1 << k)] * a[j][k] * 2.0 / (cnt[i] * (cnt[i] + 1)); } } } } for(int i = 0;i < n;++i) printf("%.6f\n",dp[1 << i]); } int main() { solve(); system("pause"); return 0; }
https://www.luogu.com.cn/problem/P2973:
$这题就比较有意思了,考虑f[i] - 经过i的期望次数$
$然后就是一个无向图的随机游走的递推f[i]。$
$递推出来是个无解的状态,但是可以高斯消元求可行解。$
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef long double ld; typedef pair<int,int> pii; const int N = 1e3 + 5; const int M = 2e3 + 5; const LL Mod = 998244353; #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; inline long long ADD(long long x,long long y) { if(x + y < 0) return ((x + y) % Mod + Mod) % Mod; return (x + y) % Mod; } inline long long MUL(long long x,long long y) { if(x * y < 0) return ((x * y) % Mod + Mod) % Mod; return x * y % Mod; } inline long long DEC(long long x,long long y) { if(x - y < 0) return (x - y + Mod) % Mod; return (x - y) % Mod; } //dp[i] - 经过i的期望步数 int in[305]; double a[N][N];//增广矩阵 double x[N],eps = 1e-10;//解集 bool freeX[N];//标记是否为自由变元 int Gauss(int equ,int var){//返回自由变元个数 /*初始化*/ for(int i=0;i<=var;i++){ x[i]=0; freeX[i]=true; } /*转换为阶梯阵*/ int col=0;//当前处理的列 int row;//当前处理的行 for(row=0;row<equ&&col<var;row++,col++){//枚举当前处理的行 int maxRow=row;//当前列绝对值最大的行 for(int i=row+1;i<equ;i++){//寻找当前列绝对值最大的行 if(abs(a[i][col])>abs(a[maxRow][col])) maxRow=i; } if(maxRow!=row){//与第row行交换 for(int j=row;j<var+1;j++) swap(a[row][j],a[maxRow][j]); } if(fabs(a[row][col]) < eps){//col列第row行以下全是0,处理当前行的下一列 row--; continue; } for(int i=row+1;i<equ;i++){//枚举要删去的行 if(fabs(a[i][col]) > eps){ double temp=a[i][col]/a[row][col]; for(int j=col;j<var+1;j++) a[i][j]-=a[row][j]*temp; a[i][col]=0; } } } //无解 for(int i=row;i<equ;i++) if(fabs(a[i][col]) > eps) return -1; //无穷解: 在var*(var+1)的增广阵中出现(0,0,...,0)这样的行 int temp=var-row;//自由变元有var-row个 if(row<var)//返回自由变元数 return temp; //唯一解: 在var*(var+1)的增广阵中形成严格的上三角阵 for(int i=var-1;i>=0;i--){//计算解集 double temp=a[i][var]; for(int j=i+1;j<var;j++) temp-=a[i][j]*x[j]; x[i]=temp/a[i][i]; } return 0; } int d[305][305]; void solve() { int n,m,p,q;scanf("%d %d %d %d",&n,&m,&p,&q); while(m--) { int u,v;scanf("%d %d",&u,&v); in[u - 1]++,in[v - 1]++; d[u - 1][v - 1] = d[v - 1][u - 1] = 1; } double f = 1 - (p * 1.0 / q); for(int i = 0;i < n;++i) { a[i][i] = 1; for(int j = 0;j < n;++j) { if(d[i][j] == 1) a[i][j] = -f / in[j]; } } a[0][n] = 1; int ans = Gauss(n,n); for(int i = 0;i < n;++i) printf("%.9f\n",x[i] * (1.0 * p / q)); } int main() { //int ca;scanf("%d",&ca); //while(ca--) { solve(); //} //system("pause"); return 0; }