《8.12solution》
1001 : 点双连通分量:
tarjan模板题:需要注意的是,点双连通分量是极大子图,也就是说他如果是很多个环拼成一个环,那么这个分量还是一个,就是最大的那个。
我们从环顶退栈即可,类似割点的位置。
/ Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<LL,int> pii; const int N = 2e5 + 5; const int M = 2e3 + 5; const LL Mod = 100000007; #define pi acos(-1) #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; int n,m,dfn[N],low[N],tim = 0,cnt = 0; vector<int> G[N]; stack<int> S; void tarjan(int u,int fa) { dfn[u] = low[u] = ++tim; S.push(u); for(auto v : G[u]) { if(!dfn[v]) { tarjan(v,u); low[u] = min(low[u],low[v]); if(low[v] >= dfn[u]) { ++cnt; while(S.top() != v) S.pop(); } } else if(v != fa) low[u] = min(low[u],dfn[v]); } } int main() { scanf("%d %d",&n,&m); while(m--) { int x,y;scanf("%d %d",&x,&y); G[x].push_back(y); G[y].push_back(x); } tarjan(1,0); printf("%d\n",cnt); // system("pause"); return 0; } /* 4 5 1 2 1 3 1 4 2 3 3 4 */
1002 : Play on Words:
这里一开始忘记判断连通图了所以一直wa。
首先我们可以把每个单词看成连u -> v的一条有向边。
那么就是题目就是问是否存在一条欧拉通路。
条件就是:所有点的入度 = 出度,或者只存在一个点满足入度 - 出度 = 1 and 出度 - 入度 = 1
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<LL,int> pii; const int N = 2e5 + 5; const int M = 2e3 + 5; const LL Mod = 100000007; #define pi acos(-1) #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; int fa[30],in[30],out[30]; bool vis[30]; int Find(int x) { return x == fa[x] ? x : fa[x] = Find(fa[x]); } int main() { int ca;scanf("%d",&ca); while(ca--) { int n;scanf("%d",&n); for(int i = 0;i <= 25;++i) fa[i] = i,in[i] = out[i] = 0; memset(vis,0,sizeof(vis)); for(int i = 1;i <= n;++i) { string s;cin >> s; int x = s[0] - 'a',y = s[s.size() - 1] - 'a'; vis[x] = vis[y] = 1; if(x != y) { in[x]++,out[y]++; int xx = Find(x),yy = Find(y); fa[xx] = yy; } } int cnt = 0,tag1 = 0,tag2 = 0; for(int i = 0;i <= 25;++i) { if(vis[i] == 0) continue; if(fa[i] == i) cnt++; if(in[i] != out[i]) { if(in[i] - out[i] == 1) tag1++; else if(out[i] - in[i] == 1) tag2++; else cnt = 2; } } if(cnt > 1 || tag1 > 1 || tag2 > 1) printf("The door cannot be opened.\n"); else printf("Ordering is possible.\n"); } // system("pause"); return 0; }
1003 : Currency Exchange:
一开始的思路有点问题,直接认为第二次走到这个点比上一次更优就是在正权值环里了,但是有可能第二次是从另一条路过来的,值比上一次大。
所有还是慢慢松弛到比原来大比较好,优先队列会掉到无限环里,所以spfa松弛就可以了。
// Author: levil #include<iostream> #include<stdio.h> #include<queue> #include<algorithm> #include<math.h> #include<stack> #include<map> #include<limits.h> #include<vector> #include<string.h> #include<string> using namespace std; typedef long long LL; typedef pair<double,int> pii; const int N = 105; const int M = 1e3 + 5; const LL Mod = 100000007; #define pi acos(-1) #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; int n,m,s,tot = 0,head[N]; bool vis[N]; double dp[N],V; struct Node{int to,next;double r,c;}e[M << 1]; void init() { memset(head,0,sizeof(head)); memset(vis,0,sizeof(vis)); tot = 0; } void add(int u,int v,double r,double c) { e[++tot].to = v,e[tot].r = r,e[tot].c = c,e[tot].next = head[u],head[u] = tot; } bool solve() { for(int i = 1;i <= n;++i) dp[i] = 0; queue<int> Q; dp[s] = V; vis[s] = 1; Q.push(s); while(!Q.empty()) { int u = Q.front(); vis[u] = 0; Q.pop(); for(int i = head[u];i;i = e[i].next) { int v = e[i].to; double ma = (dp[u] - e[i].c) * e[i].r; //printf("v is %d ma is %.2f\n",v,ma); if(dp[v] < ma) { dp[v] = ma; if(dp[s] > V) return true; if(vis[v] == 0) { Q.push(v); vis[v] = 1; } } } } return false; } int main() { while(~scanf("%d %d %d %lf",&n,&m,&s,&V)) { init(); while(m--) { int u,v; double r1,c1,r2,c2; scanf("%d %d %lf %lf %lf %lf",&u,&v,&r1,&c1,&r2,&c2); add(u,v,r1,c1); add(v,u,r2,c2); } printf("%s\n",solve() ? "YES" : "NO"); } //system("pause"); return 0; } /* 4 4 1 20.0 1 2 1.00 1.00 1.00 1.00 2 3 1.10 1.00 1.00 1.00 3 4 1.10 1.00 1.00 1.00 4 2 1.10 1.00 1.00 1.00 */
1004 : 点的距离:
LCA裸题没什么好说的。这里询问的数量不够明显,所以写的st表比普通还慢。
// Author: levil #include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<LL,int> pii; const int N = 1e5 + 5; const int M = 2e3 + 5; const LL Mod = 100000007; #define pi acos(-1) #define INF 1e9 #define dbg(ax) cout << "now this num is " << ax << endl; int n,st[N << 1][30],dep[N],dfn[N],lg[N << 1],tim = 0,tot = 0; vector<int> G[N]; void dfs(int u,int fa) { dfn[u] = ++tot; dep[u] = dep[fa] + 1; st[tot][0] = u; for(auto v : G[u]) { if(v == fa) continue; dfs(v,u); st[++tot][0] = u; } } void init() { lg[1] = 0; for(int i = 2;i <= tot;++i) lg[i] = lg[i >> 1] + 1; for(int j = 1;(1 << j) <= tot;++j) { for(int i = 1;i + (1 << j) - 1 <= tot;++i) { if(dep[st[i][j - 1]] <= dep[st[i + (1 << j - 1)][j - 1]]) st[i][j] = st[i][j - 1]; else st[i][j] = st[i + (1 << j - 1)][j - 1]; } } } int LCA(int x,int y) { x = dfn[x],y = dfn[y]; if(x > y) swap(x,y); int k = lg[y - x + 1]; if(dep[st[x][k]] < dep[st[y - (1 << k) + 1][k]]) return st[x][k]; else return st[y - (1 << k) + 1][k]; } int query(int x,int y) { return dep[x] + dep[y] - 2 * dep[LCA(x,y)]; } int main() { scanf("%d",&n); for(int i = 1;i < n;++i) { int x,y;scanf("%d %d",&x,&y); G[x].push_back(y); G[y].push_back(x); } dfs(1,0); init(); int q;scanf("%d",&q); while(q--) { int x,y;scanf("%d %d",&x,&y); printf("%d\n",query(x,y)); } // system("pause"); return 0; }