所有接口中,只有函数式接口才能进行函数式编程,即才能使用Lambda表达式,Java语言通过Lambda表达式与方法引用等,为开发者打开了函数式编程的大门
一、接口使用的三种方式
1、创建一个类实现接口,在类中重写接口的抽象方法。创建实现类对象来使用。
2、通过匿名内部类的方式来使用接口(注意匿名内部类会生成class文件,而使用Lambda表达式则不会生成class文件,如果少了一个class文件,则内存中会少加载一个class文件,故Lambda的效率比匿名内部类要高一些)
3、函数式编程,比匿名内部类的方式更加简单。
在兼顾面向对象特性的基础上,Java语言通过Lambda表达式与方法引用等,为开发者打开了函数式编程的大门。
二、函数式接口(使用Lambda或方法引用来编程)
1、概念
函数式接口在Java中是指:有且仅有一个抽象方法的接口。但是可以有其他非抽象方法(默认、静态、私有方法)。
函数式接口,即适用于函数式编程场景的接口。而Java中的函数式编程体现就是Lambda,所以函数式接口就是可以适用于Lambda使用的接口(即只有一个抽象方法,接口才能使用Lambda表达式,为啥?因为要使用Lambda表达式重写接口中的方法,如果有多个,接口就不知道重写的是哪个方法,个人理解)。只有确保接口中有且仅有一个抽象方法,Java中的Lambda才能顺利地进行推导。
备注:“语法糖”是指使用更加方便,但是原理不变的代码语法。例如在遍历集合时使用的for-each语法,其实底层的实现原理仍然是迭代器,这便是“语法糖”。增强for循环就是迭代器的语法糖。从应用层面来讲,Java中的Lambda可以被当做是匿名内部类的“语法糖”(我们使用Lambda表达式优化匿名内部类),但是二者在原理上是不同的。
2、格式
修饰符 interface 接口名称 { public abstract 返回值类型 方法名称(可选参数信息); // 其他非抽象方法内容 }
由于接口当中抽象方法的 public abstract 是可以省略的,所以定义一个函数式接口很简单:
public interface MyFunctionalInterface { void myMethod(); }
3、使用@FunctionalInterface注解(确保有且仅有一个抽象方法)
@FunctionalInterface public interface MyFunctionalInterface { void myMethod(); }
一旦使用该注解来定义接口,编译器将会强制检查该接口是否确实有且仅有一个抽象方法,否则将会报错。需要注意的是,即使不使用该注解,只要满足函数式接口的定义,这仍然是一个函数式接口,使用起来都一样。
4、自定义(无参无返回)函数式接口
对于刚刚定义好的 MyFunctionalInterface函数式接口,典型使用场景就是作为方法的参数:
public class Demo09FunctionalInterface { // 使用自定义的函数式接口作为方法参数 private static void doSomething(MyFunctionalInterface inter) { inter.myMethod(); // 调用自定义的函数式接口方法 } public static void main(String[] args) { // 调用使用函数式接口的方法 doSomething(() ‐> System.out.println("Lambda执行啦!")); } }
二、函数式编程(延迟执行字符串拼接,可以大大提高程序的效率)
Java中的函数式编程体现就是Lambda。在兼顾面向对象特性的基础上,Java语言通过Lambda表达式与方法引用等,为开发者打开了函数式编程的大门。下面我们做一个初探。
方法引用可以简化Lambda表达式
1、理解Lambda延迟执行的特点
有些场景的代码执行后,结果不一定会被使用,从而造成性能浪费。而Lambda表达式是延迟执行的,这正好可以作为解决方案,提升性能。
性能浪费的日志案例(字符串拼接)
注:日志可以帮助我们快速的定位问题,记录程序运行过程中的情况,以便项目的监控和优化。
一种典型的场景就是对参数进行有条件使用,例如对日志消息进行拼接后,在满足条件的情况下进行打印输出:
public class Demo01Logger { private static void log(int level, String msg) { if (level == 1) { System.out.println(msg); } } public static void main(String[] args) { String msgA = "Hello"; String msgB = "World"; String msgC = "Java"; log(1, msgA + msgB + msgC); } }
这段代码存在问题:无论级别是否满足要求,先拼接字符串再调用log方法再进行级别判断,即作为 log 方法的第二个参数,三个字符串一定会首先被拼接并传入方法内,然后才会进行级别判断。如果级别不符合要求,那么字符串的拼接操作就白做了,存在性能浪费。
PS:当用+号进行一次字符串拼接的时候都会new一个StringBuilder,而new对象和销毁对象(垃圾回收)都会占用系统资源。
备注:SLF4J是应用非常广泛的日志框架,它在记录日志时为了解决这种性能浪费的问题,并不推荐首先进行字符串的拼接,而是将字符串的若干部分作为可变参数传入方法中,仅在日志级别满足要求的情况下才会进行字符串拼接。例如: LOGGER.debug("变量{}的取值为{}。", "os", "macOS") ,其中的大括号 {} 为占位符。如果满足日志级别要求,则会将“os”和“macOS”两个字符串依次拼接到大括号的位置;否则不会进行字符串拼接。
例如:
logger.info("request params:"+str);
我们可以使用另一种方式,使用占位符 {} 是一个英文大括号,多个参数就多个大括号,后面用逗号间隔代入参数
logger.info("request params1:{} params2: {}", str1, str2);
这也是一种可行解决方案,但Lambda可以做到更好。
2、体验Lambda的更优写法
使用Lambda必然需要一个函数式接口:
@FunctionalInterface public interface MessageBuilder { String buildMessage(); }
然后对 log 方法进行改造:
public class Demo02LoggerLambda { private static void log(int level, MessageBuilder builder) { if (level == 1) { System.out.println(builder.buildMessage()); // 只有条件满足,才会重写buildMessage方法,再进行字符串的拼接。 } } public static void main(String[] args) { String msgA = "Hello"; String msgB = "World"; String msgC = "Java"; log(1, () ‐> msgA + msgB + msgC ); } }
结果:
HelloWorldJava
这样一来,只有当级别满足要求的时候,才会进行三个字符串的拼接;否则三个字符串将不会进行拼接。
证明Lambda的延迟
使用Lambda表达式作为参数传递,仅仅是把参数传递到log方法中,只有满足条件,即日志等级是1才会调用接口中的方法,只有调用buildMessage方法才会进行字符串的拼接,如果不调用该方法,则不会进行字符串的拼接,因为Lambda主要是对方法进行重写,返回拼接好的字符串,如果方法不执行,则字符串是不会拼接的。证明Lambda的延迟
public class Demo03LoggerDelay { private static void log(int level, MessageBuilder builder) { if (level == 1) { System.out.println(builder.buildMessage()); } } public static void main(String[] args) { String msgA = "Hello"; String msgB = "World"; String msgC = "Java"; log(2, () ‐> { System.out.println("Lambda执行!"); return msgA + msgB + msgC; }); } }
发现没有打印任何信息。
从结果中可以看出,在不符合级别要求的情况下,Lambda将不会执行。从而达到节省性能的效果。
扩展:实际上使用内部类也可以达到同样的效果,只是将代码操作延迟到了另外一个对象当中通过调用方法来完成。而是否调用其所在方法是在条件判断之后才执行的。
3、使用Lambda作为方法的参数(代表:Runnable)
如果抛开实现原理不说,Java中的Lambda表达式可以被当作是匿名内部类的替代品。如果方法的参数是一个函数式接口类型,那么就可以使用Lambda表达式进行替代。使用Lambda表达式作为方法参数,其实就是使用函数式接口作为方法参数。
例如 java.lang.Runnable 接口就是一个函数式接口,假设有一个 startThread 方法使用该接口作为参数,那么就可以使用Lambda进行传参。这种情况其实和 Thread 类的构造方法参数为 Runnable (来开启线程的方式)没有本质区别。调用该方法即开启了一个线程。
public class Demo04Runnable { private static void startThread(Runnable task) { new Thread(task).start(); } public static void main(String[] args) { startThread(() ‐> System.out.println("线程任务执行!")); } }
Runnable接口如下:
@FunctionalInterface public interface Runnable { public abstract void run(); }
Thread 类的构造方法参数为 Runnable
public class Demo2CreateRunnable { public static void main(String[] args) { System.out.println("-----多线程创建开始-----"); Thread thread1 = new Thread(createRunnable); Thread thread2 = new Thread(createRunnable); // 2.开始执行线程 注意 开启线程不是调用run方法,而是start方法 System.out.println("-----多线程创建启动-----"); thread1.start(); thread2.start(); System.out.println("-----多线程创建结束-----"); } static class CreateRunnable implements Runnable { public void run() { String name = Thread.currentThread().getName(); for (int i = 0; i < 5; i++) { System.out.println(name + "的内容:" + i); } } } }
项目中使用Lambda表达式:
new Thread(() -> quartzERPInOrderService.getInOrderByParams(orgCode, "2705", "", start, end)).start();
4、使用Lambda作为方法的返回值(代表:Comparator)
类似地,如果一个方法的返回值类型是一个函数式接口,那么就可以直接返回一个Lambda表达式。当需要通过一个方法来获取一个 java.util.Comparator 接口类型的对象作为排序器时,就可以调该方法获取。
public class Demo06Comparator {
private static Comparator<String> newComparator() {
return (a, b) ‐> b.length() ‐ a.length(); // 按字符串的长度降序排序
}
public static void main(String[] args) {
String[] array = { "abc", "ab", "abcd" };
System.out.println(Arrays.toString(array));
Arrays.sort(array, newComparator());
System.out.println(Arrays.toString(array));
}
}
结果:[abcd,abc,ab]
其中直接return一个Lambda表达式即可。
三、(JDK提供的)常用函数式接口
JDK提供了大量常用的函数式接口以丰富Lambda的典型使用场景,它们主要在java.util.function 包中被提供。下面是最简单的几个接口及使用示例。
1、使用Supplier函数式接口
Supplier接口源码
@FunctionalInterface public interface Supplier<T> { /** * Gets a result. * * @return a result */ T get(); }
java.util.function.Supplier<T>接口仅包含一个无参的方法: T get() ,get方法的返回值为泛型T,接口Supplier指定什么类型的泛型,则get方法就返回什么类型的数据。用来获取一个泛型参数指定类型的对象数据。由于这是一个函数式接口,这也就意味着对应的Lambda表达式需要“对外提供”一个符合泛型类型的对象数据。
public class Demo08Supplier { private static String getString(Supplier<String> function) { return function.get(); // get 方法返回字符串 } public static void main(String[] args) { String msgA = "Hello"; String msgB = "World"; System.out.println(getString(() ‐> msgA + msgB)); } }
结果:HelloWorld
例2:求数组元素最大值
使用 Supplier 接口作为方法参数类型,通过Lambda表达式求出int数组中的最大值。提示:接口的泛型请使用java.lang.Integer 类。
public class Demo02Test { //定一个方法,方法的参数传递Supplier,泛型使用Integer public static int getMax(Supplier<Integer> sup){ return sup.get(); } public static void main(String[] args) { int arr[] = {2,3,4,52,333,23}; //调用getMax方法,参数传递Lambda int maxNum = getMax(()->{ //计算数组的最大值 int max = arr[0]; for(int i : arr){ if(i>max){ max = i; } } return max; }); System.out.println(maxNum); } }
结果:333
例3:
public class Demo01Supplier { //定义一个方法,方法的参数传递Supplier<T>接口,泛型执行String,get方法就会返回一个String public static String getString(Supplier<String> sup){ return sup.get(); } public static void main(String[] args) { //调用getString方法,方法的参数Supplier是一个函数式接口,所以可以传递Lambda表达式 String s = getString(new Supplier<String>() { @Override public String get() { return "匿名内部类胡歌"; } }); System.out.println(s); String s1 = getString(()->{ //生产一个字符串,并返回 return "lambda胡歌"; }); System.out.println(s1); //优化Lambda表达式 String s2 = getString(()->"优化后lambda胡歌"); System.out.println(s2); } }
结果:
匿名内部类胡歌
lambda胡歌
优化后lambda胡歌
2、使用Consumer函数式接口
Consumer接口源码
@FunctionalInterface public interface Consumer<T> { void accept(T t); default Consumer<T> andThen(Consumer<? super T> after) { Objects.requireNonNull(after); return (T t) -> { accept(t); after.accept(t); }; } }
java.util.function.Consumer<T>接口则正好与Supplier接口相反,它不是生产一个数据,而是消费一个数据,其数据类型由泛型决定。
1)、抽象方法:accept
public class Demo09Consumer { private static void consumeString(Consumer<String> function) { function.accept("Hello"); } public static void main(String[] args) { consumeString(s ‐> System.out.println(s)); } }
结果:Hello
当然,更好的写法是使用方法引用。
public class Demo09Consumer { private static void consumeString(Consumer<String> function) { function.accept("Hello"); } public static void main(String[] args) { // consumeString(s -> System.out.println(s)); consumeString(System.out::println); } }
例2:
public class Demo01Consumer { /* 定义一个方法 方法的参数传递一个字符串的姓名 方法的参数传递Consumer接口,泛型使用String 可以使用Consumer接口消费字符串的姓名 */ public static void method(String name, Consumer<String> con){ con.accept(name); } public static void main(String[] args) { // 匿名类方式 method("赵丽颖", new Consumer<String>() { @Override public void accept(String name) { String reName = new StringBuffer(name).reverse().toString(); System.out.println(reName); } }); //调用method方法,传递字符串姓名,方法的另一个参数是Consumer接口,是一个函数式接口,所以可以传递Lambda表达式 method("赵丽颖",(String name)->{ //对传递的字符串进行消费 //消费方式:直接输出字符串 //System.out.println(name); //消费方式:把字符串进行反转输出 String reName = new StringBuffer(name).reverse().toString(); System.out.println(reName); }); } }
结果:
颖丽赵
颖丽赵
2)、默认方法:andThen
如果一个方法的参数和返回值全都是Consumer类型,那么就可以实现效果:消费数据的时候,首先做一个操作,然后再做一个操作,实现组合。而这个方法就是 Consumer 接口中的default方法 andThen 。
备注: java.util.Objects 的 requireNonNull 静态方法将会在参数为null时主动抛出NullPointerException 异常。这省去了重复编写if语句和抛出空指针异常的麻烦。
public static <T> T requireNonNull(T obj) { if (obj == null) throw new NullPointerException(); return obj; }
要想实现组合,需要两个或多个Lambda表达式即可,而 andThen 的语义正是“一步接一步”操作。例如两个步骤组合的情况:
public class Demo10ConsumerAndThen { private static void consumeString(Consumer<String> one, Consumer<String> two) { one.andThen(two).accept("Hello"); } public static void main(String[] args) { consumeString( s ‐> System.out.println(s.toUpperCase()), s ‐> System.out.println(s.toLowerCase())); } }
结果:HELLO hello
注意:one.andThen(two).accept("Hello"); 等价于:
one.accept("Hello"); two.accept("Hello");
例2:
下面的字符串数组当中存有多条信息,请按照格式“ 姓名:XX。性别:XX。 ”的格式将信息打印出来。要求将打印姓名的动作作为第一个 Consumer 接口的Lambda实例,将打印性别的动作作为第二个 Consumer 接口的Lambda实例,将两个 Consumer 接口按照顺序“拼接”到一起。
public class DemoConsumer { public static void main(String[] args) { String[] array = { "迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男" }; printInfo(s -> System.out.print("姓名:" + s.split(",")[0]), s -> System.out.println("。性别:" + s.split(",")[1] + "。"), array); } private static void printInfo(Consumer<String> one, Consumer<String> two, String[] array) { for (String info : array) { one.andThen(two).accept(info); // 姓名:迪丽热巴。性别:女。 } } }
结果:
姓名:迪丽热巴。性别:女。
姓名:古力娜扎。性别:女。
姓名:马尔扎哈。性别:男。
3、使用Predicate函数式接口
有时候我们需要对某种类型的数据进行判断,从而得到一个boolean值结果。这时可以使用java.util.function.Predicate<T>接口。
predicate接口源码:
@FunctionalInterface public interface Predicate<T> { boolean test(T t); default Predicate<T> and(Predicate<? super T> other) { Objects.requireNonNull(other); return (t) -> test(t) && other.test(t); } default Predicate<T> negate() { return (t) -> !test(t); } default Predicate<T> or(Predicate<? super T> other) { Objects.requireNonNull(other); return (t) -> test(t) || other.test(t); } static <T> Predicate<T> isEqual(Object targetRef) { return (null == targetRef) ? Objects::isNull : object -> targetRef.equals(object); } }
1)、抽象方法:test
public class Demo15PredicateTest { private static void method(Predicate<String> predicate) { boolean veryLong = predicate.test("HelloWorld"); System.out.println("字符串很长吗:" + veryLong); } public static void main(String[] args) { method(s ‐> s.length() > 5); } }
结果:
字符串很长吗:true
条件判断的标准是传入的Lambda表达式逻辑,只要字符串长度大于5则认为很长。
例2:
public class Demo01Predicate { /* 定义一个方法 参数传递一个String类型的字符串 传递一个Predicate接口,泛型使用String 使用Predicate中的方法test对字符串进行判断,并把判断的结果返回 */ public static boolean checkString(String s, Predicate<String> pre){ //定义好方法 return pre.test(s); } public static void main(String[] args) { //定义一个字符串 String s = "abcdef"; // 匿名内部类方式 boolean b1 = checkString(s, new Predicate<String>() { @Override public boolean test(String s) { return s.length()>5; } }); System.out.println("匿名内部类方式: "+b1); //调用checkString方法对字符串进行校验,参数传递字符串和Lambda表达式 boolean b2 = checkString(s,(String str)->{ //对参数传递的字符串进行判断,判断字符串的长度是否大于5,并把判断的结果返回 return str.length()>5; }); System.out.println("lambda表达方式: "+b2); //优化Lambda表达式 boolean b3 = checkString(s,str->str.length()>5); System.out.println("优化后lambda表达方式: "+b3); } }
结果:
匿名内部类方式: true lambda表达方式: true 优化后lambda表达方式: true
2)、默认方法:and
既然是条件判断,就会存在与、或、非三种常见的逻辑关系。其中将两个Predicate 条件使用“与”逻辑连接起来实现“并且”的效果时,可以使用default方法 and 。
如果要判断一个字符串既要包含大写“H”,又要包含大写“W”,那么:
public class Demo16PredicateAnd { private static void method(Predicate<String> one, Predicate<String> two) { boolean isValid = one.and(two).test("Helloworld"); System.out.println("字符串符合要求吗:" + isValid); } public static void main(String[] args) { method(s ‐> s.contains("H"), s ‐> s.contains("W")); } }
结果:
字符串符合要求吗:false
3)、默认方法:or
与 and 的“与”类似,默认方法or实现逻辑关系中的“或”。
如果希望实现逻辑“字符串包含大写H或者包含大写W”,那么代码只需要将“and”修改为“or”名称即可,其他都不变:
public class Demo16PredicateAnd { private static void method(Predicate<String> one, Predicate<String> two) { boolean isValid = one.or(two).test("Helloworld"); System.out.println("字符串符合要求吗:" + isValid); } public static void main(String[] args) { method(s ‐> s.contains("H"), s ‐> s.contains("W")); } }
结果:
字符串符合要求吗:true
4)、默认方法:negate
“与”、“或”已经了解了,剩下的“非”(取反)也会简单。
从实现中很容易看出,它是执行了test方法之后,对结果boolean值进行“!”取反而已。一定要在test 方法调用之前调用 negate 方法,正如 and 和 or 方法一样:
public class Demo17PredicateNegate { private static void method(Predicate<String> predicate) { boolean veryLong = predicate.negate().test("HelloWorld"); System.out.println("字符串很长吗:" + veryLong); } public static void main(String[] args) { method(s ‐> s.length() < 5); } }
结果:
字符串很长吗:true
例2:集合信息筛选
数组当中有多条“姓名+性别”的信息如下,请通过 Predicate 接口的拼装将符合要求的字符串筛选到集合ArrayList 中,需要同时满足两个条件:
1. 必须为女生;
2. 姓名为4个字。
public class DemoPredicate { public static void main(String[] args) { String[] array = { "迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男", "赵丽颖,女" }; List<String> list = filter(array, s -> "女".equals(s.split(",")[1]), s -> s.split(",")[0].length() == 4); System.out.println(list); } private static List<String> filter(String[] array, Predicate<String> one, Predicate<String> two) { List<String> list = new ArrayList<>(); for (String info : array) { if (one.and(two).test(info)) { list.add(info); } } return list; } }
结果:
[迪丽热巴,女, 古力娜扎,女]
4、使用Function函数式接口
Function接口的源码
@FunctionalInterface
public interface Function<T, R> {
R apply(T t);
default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
}
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
}
static <T> Function<T, T> identity() {
return t -> t;
}
}
java.util.function.Function<T,R>接口用来根据一个类型的数据得到另一个类型的数据,前者称为前置条件,后者称为后置条件。
1)、抽象方法:apply
Function 接口中最主要的抽象方法为:R apply(T t) ,根据类型T的参数获取类型R的结果。
使用的场景例如:将 String 类型转换为Integer 类型。
public class Demo11FunctionApply { private static void method(Function<String, Integer> function) { int num = function.apply("10"); System.out.println(num + 20); } public static void main(String[] args) { method(s ‐> Integer.parseInt(s)); } }
结果:30
当然,最好是通过方法引用的写法。
public class Demo11FunctionApply { private static void method(Function<String, Integer> function) { int num = function.apply("10"); System.out.println(num + 20); } public static void main(String[] args) { // method(s -> Integer.parseInt(s)); method(Integer::parseInt); } }
例2:
public class Demo01Function { /* 定义一个方法 方法的参数传递一个字符串类型的整数 方法的参数传递一个Function接口,泛型使用<String,Integer> 使用Function接口中的方法apply,把字符串类型的整数,转换为Integer类型的整数 */ public static void change(String s, Function<String,Integer> fun){ //Integer in = fun.apply(s); int in = fun.apply(s);//自动拆箱 Integer->int System.out.println(in); } public static void main(String[] args) { //定义一个字符串类型的整数 String s = "1234"; //匿名内部类 change(s, new Function<String, Integer>() { // 重写apply @Override public Integer apply(String str) { return Integer.parseInt(str); } }); //调用change方法,传递字符串类型的整数,和Lambda表达式 change(s,(String str)->{ //把字符串类型的整数,转换为Integer类型的整数返回 return Integer.parseInt(str); }); //优化Lambda change(s,str->Integer.parseInt(str)); } }
结果:
1234 1234 1234
2)、默认方法:andThen
Function 接口中有一个默认的 andThen方法,用来进行组合操作。
public class Demo12FunctionAndThen { private static void method(Function<String, Integer> one, Function<Integer, Integer> two) { int num = one.andThen(two).apply("10"); System.out.println(num + 20); } public static void main(String[] args) { method(str‐>Integer.parseInt(str)+10, i ‐> i *= 10); } }
结果:220
第一个操作是将字符串解析成为int数字,第二个操作是乘以10。两个操作通过andThen 按照前后顺序组合到了一起。
例2:自定义函数模型拼接
请使用 Function 进行函数模型的拼接,按照顺序需要执行的多个函数操作为:String str = "赵丽颖,20";
1. 将字符串截取数字年龄部分,得到字符串;
2. 将上一步的字符串转换成为int类型的数字;
3. 将上一步的int数字累加100,得到结果int数字。
public class DemoFunction { public static void main(String[] args) { String str = "赵丽颖,20"; int age = getAgeNum(str, s -> s.split(",")[1], s ->Integer.parseInt(s), n -> n += 100); System.out.println(age); } private static int getAgeNum(String str, Function<String, String> one, Function<String, Integer> two, Function<Integer, Integer> three) { return one.andThen(two).andThen(three).apply(str); } }
结果:120