cf932E. Team Work(第二类斯特灵数 组合数)

题意

题目链接

Sol

这篇题解写的非常详细

首先要知道第二类斯特灵数的一个性质

\[m^n = \sum_{i = 0}^m C_{n}^i S(n, i) i! \]

证明可以考虑组合意义:\(m^n\)是把\(n\)个不同的球放到\(m\)个不同的盒子里的方案数

然后用这个式子展开\(i^k\),把组合数展开,会得到这样一个式子

\[\sum_{i=1}^n\frac{n!}{(n-i)!}\sum_{j=0}^i\frac{S(k,j)}{(i-j)!} \]

发现不是很好搞,但是考虑到当\(j > k\)\(S(k, j) = 0\),于是可以先枚举\(S(k, j)\)的贡献

\(\sum_{j = 0}^n S(k, j) \sum_{i = 1}^n \frac{n!}{(n - i)!} \frac{1}{(i - j)!}\)

把后面构造成组合数的形式

最终会得到

\[\sum_{j=0}^{k}S(k,j)\frac{n!}{(n-j)!}2^{n-j} \]

注意这里的阶乘是不能直接推的,可以维护化简之后的结果。

然后就做完了。


经验:

看到\(i^k\)想一想第二类斯特灵数

循环复杂度过高时考虑更换枚举顺序

看到分子分母中有阶乘时尝试构造组合数

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 5001, mod = 1e9 + 7, inv2 = 500000004;
inline int read() {
	char c = getchar(); int x = 0, f = 1;
	while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
	while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
	return x * f;
}
int N, K, s[MAXN][MAXN];
int fastpow(int a, int p) {
	int base = 1;
	while(p) {
		if(p & 1) base = 1ll * base * a % mod;
		a = 1ll * a * a % mod; p >>= 1;
	}
	return base;
}
int main() {
	s[0][0] = 1;
	cin >> N >> K;
	for(int i = 1; i <= K; i++)
		for(int j = 1; j <= K; j++)
			s[i][j] = (s[i - 1][j - 1] + 1ll * s[i - 1][j] * j % mod) % mod;
	int ans = 0, nv = 1, po2 = fastpow(2, N);
	for(int i = 0; i <= min(K, N); po2 = 1ll * po2 * inv2 % mod, nv = 1ll * nv * (N - i) % mod, i++)
		(ans += (1ll * s[K][i] * nv % mod * po2 % mod)) %= mod;
	cout << ans % mod;
	return 0;
}
posted @ 2018-09-29 11:23  自为风月马前卒  阅读(853)  评论(0编辑  收藏  举报

Contact with me