cf314E. Sereja and Squares(dp)

题意

题目链接

给你一个擦去了部分左括号和全部右括号的括号序列,括号有25种,用除x之外的小写字母a~z表示。求有多少种合法的括号序列。答案对4294967296取模。
合法序列不能相交,如()[],([])是合法序列,而([)]是不合法的。

Sol

这个题告诉我们什么叫:暴力艹标算,n方过百万。。。

首先当左括号确定之后,右括号的摆放顺序是确定的。

假设左括号只有一种

设$f[i][j]$表示前$i$个位置放了$j$个右括号

转移的时候分两种情况讨论

若该位置为$?$

放左括号的方案为$f[i - 1][j]$
放右括号的方案为$f[i - 1][j - 1]$

由于到第$i$个位置,最多有$i/2$个右括号。
当然还有一个下界$i - \frac{n}{2}$。
上界和下界都是为了保证序列合法

trick:对$2^{32}$取模相当于unsigned int 自然溢出

等等。。这题是个假题吧。。。。。

如果序列全都是????????

我算的最坏复杂度是$O(\frac{n^2}{8} + \frac{n^2}{16})$.......

#include<bits/stdc++.h>
#define ui unsigned int 
using namespace std;
const int MAXN = 1e5 + 10;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, cnt;
ui f[MAXN];
char s[MAXN];
int main() {
    N = read();
    if(N & 1) return puts("0"), 0;
    scanf("%s", s + 1);
    f[0] = 1;
    for(int i = 1; i <= N; i++) {
        if(s[i] == '?')
            for(int j = (i >> 1); j >= max(1, i - N / 2); j--)
                f[j] += f[j - 1];
        else cnt++;
    }
    ui ans = 1;
    for(int i = 1; i <= N / 2 - cnt; i++) ans *= 25;
    cout << ans * f[N >> 1];
    return 0;
}
posted @ 2018-09-27 15:18  自为风月马前卒  阅读(692)  评论(2编辑  收藏  举报

Contact with me