ZR18提高5解题报告

不想说啥了,比赛期间智商全程下线

A

设$f[i][j]$表示前$i$个位置,前缀和为$j$的方案数,转移的时候该位置放了什么,以及该位置之前的和是多少。

发现第二维可以前缀和优化。

不用管代码里的fib是什么,当时傻了在xjb分析下界。。。。

时间复杂度:$O(nk)$

/*

*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<vector>
#include<set>
#include<queue>
#include<cmath>
//#include<ext/pb_ds/assoc_container.hpp>
//#include<ext/pb_ds/hash_policy.hpp>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long 
#define LL long long 
#define ull unsigned long long 
#define rg register 
#define pt(x) printf("%d ", x);
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? EOF : *p1++)
//char buf[(1 << 22)], *p1 = buf, *p2 = buf;
//char obuf[1<<24], *O = obuf;
//void print(int x) {if(x > 9) print(x / 10); *O++ = x % 10 + '0';}
//#define OS  *O++ = ' ';
using namespace std;
//using namespace __gnu_pbds;
const int MAXN = 1e6 + 10, INF = 1e9 + 10, mod = 998244353;
const double eps = 1e-9;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int f[21][MAXN], s[MAXN], fib[MAXN];
main() {
    int N = read(), K = read();//k个位置 总和为n 
    fib[1] = 1; fib[2] = 1;
    for(int i = 3; i <= N; i++) fib[i] = fib[i - 1] + fib[i - 2];
    for(int i = 1; i <= N; i++) f[1][i] = 1, s[i] = (s[i - 1] + f[1][i]) % mod;
    for(int i = 2; i <= K; i++) {
        for(int j = 1; j <= N; j++) {
        //    for(int k = fib[i - 1]; k <= j / 2; k++) (f[i][j] += f[i - 1][k]) %= mod;
            f[i][j] = s[j / 2] % mod;
            if((j / 2 >= fib[i - 1]) && (fib[i - 1] >= 1)) f[i][j] = (f[i][j] - s[fib[i - 1] - 1] + mod) % mod;            
        }
        s[0] = 0;
        for(int j = 1; j <= N; j++) 
            s[j] = (s[j - 1] + f[i][j]) % mod;
    }

    printf("%d", f[K][N] % mod);
    return 0;
}
/*
15 3
*/
A

 

B

起点和终点都是已知的,那么对于其他的节点,一定是从根节点走到该节点再往回走。

这样我们记录下根节点到其他节点路径的并,在这之中唯一不需要经过两次的是该节点到根的路径,减去即可

由于每个点只会经过一次,因此时间复杂度为:$O(n+m)$

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 10;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M, dep[MAXN], fa[MAXN], vis[MAXN];
vector<int> v[MAXN];
void dfs(int x, int _fa) {
    dep[x] = dep[_fa] + 1;
    fa[x] = _fa;
    for(int i = 0; i < v[x].size(); i++) {
        int to = v[x][i];
        if(to == _fa) continue;
        dfs(to, x);
    }
}
int main() {
    N = read(); M = read();
    for(int i = 1; i <= N - 1; i++) {
        int x = read(), y = read();
        v[x].push_back(y); v[y].push_back(x);
    }
    dep[0] = -1; dfs(1, 0);
    vis[1] = 1;
    int tot = 0, ans = 0;
    for(int i = 1; i <= M; i++) {
        int x = read(), tmp = x;
        while(!vis[x]) tot++, vis[x] = 1, x = fa[x];
        printf("%d\n", 2 * tot - dep[tmp]);
    }
    return 0;
}
/*
*/
B

 

C

神仙题Orz

题目里有个很良心的部分分

这就提示我们跟二进制拆分有点关系了

序列上的问题好像很难搞,我们扔到环上去(这是怎么想到的啊Orz)

构造一个这样的环

上下两个$0$不管进化几次肯定都是$0$(左右对称)

考虑其他位置,观察每一项展开后的式子不难发现(发现不了。。)

对于位置$i$,如果$a[i]$进化了$2^d$后变为$c[i]$,那么$c[i] = a[i - 2^d] + a[i+2^d]$

做完了。。

#include<cstdio>
#include<cstring>
#define int long long 
using namespace std;
const int MAXN = 1e6 + 10;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int T, N;
char s[MAXN];
int a[MAXN], b[MAXN];
main() {
    T = read(); N = read();
    // for(int i = 1; i <= N; i++) a[i] = read();
    scanf("%s", s + 1);
    for(int i = 1; i <= N; i++) a[i] = s[i] - '0', a[N * 2  + 2 - i] = a[i]; 
    N = N * 2 + 2;
    for(int j = 61; j >= 0; j--) {
        if(T & (1ll << j)) {
            int base = (1ll << j) % N;
            for(int i = 0; i <= N; i++) b[i] = a[(i - base + N) % N] ^ a[(i + base) % N];
            memcpy(a, b, sizeof(a));
        }
    }
    for(int i = 1; i <= N / 2 - 1; i++) printf("%d", a[i]);
    return 0;
}
/*
2 5
10010
*/
C

 

posted @ 2018-09-25 10:18  自为风月马前卒  阅读(245)  评论(0编辑  收藏  举报

Contact with me