BZOJ3560: DZY Loves Math V(欧拉函数)
Submit: 557 Solved: 318
[Submit][Status][Discuss]
Description
给定n个正整数a1,a2,…,an,求
的值(答案模10^9+7)。
Input
第一行一个正整数n。
接下来n行,每行一个正整数,分别为a1,a2,…,an。
Output
仅一行答案。
Sample Input
3
6
10
15
6
10
15
Sample Output
1595
HINT
1<=n<=10^5,1<=ai<=10^7。共3组数据。
Source
将$a_i$分解质因数后$p$的出现次数设为$b_i$
那么我们要求的就是
$\sum_{i_1 = 0}^{b_1} \sum_{i_2 = 0}^{b_2} \dots \sum_{i_n = 0}^{b_n} \phi( p^{\sum_{j = 1}^n i_j})$
考虑到$\phi(p^k) = p^k - p^{k - 1}$
同时我们需要特判一下$1$的情况!
上式可以化为
$\sum_{i_1 = 0}^{b_1} \sum_{i_2 = 0}^{b_2} \dots \sum_{i_n = 0}^{b_n}( p^{\sum_{j = 1}^n i_j} - 1) * \frac{p - 1}{p} + 1$
再重新考虑每一个$p$
$[(\prod_{i = 1}^{n} \sum_{i = 0}^{b_i} p^j) - 1] * \frac{p - 1}{p} + 1$
#include<cstdio> #include<algorithm> #define LL long long #define int long long using namespace std; const int MAXN = 1e6 + 10, mod = 1e9 + 7; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int T, N, M; struct Node { int p, a; bool operator < (const Node &rhs) const { return p == rhs.p ? a < rhs.a : p < rhs.p; } }s[MAXN]; int tot = 0; void insert(int x) { for(int i = 2; i * i <= x; i++) { if(!(x % i)) { s[++tot].p = i; while(!(x % i)) x /= i, s[tot].a++; } } if(x > 1) s[++tot] = (Node) {x, 1}; } int fastpow(int a, int p, int mod) { int base = 1; while(p) { if(p & 1) base = (base * a) % mod; a = (a * a) % mod; p >>= 1; } return base % mod; } int calc(int l, int r) { static int sum[31] = {}; sum[0] = 1; for(int i = 1; i <= s[r].a; i++) sum[i] = sum[i - 1] * s[l].p % mod; for(int i = 1; i <= s[r].a; i++) sum[i] = (sum[i - 1] + sum[i]) % mod; int rt = 1; for(int i = l; i <= r; i++) rt = (rt * sum[s[i].a]) % mod; rt--; rt = (rt * fastpow(s[l].p, mod - 2, mod) + mod) % mod; rt = (rt * (s[l].p - 1) + mod) % mod; return (rt + 1) % mod; } main() { // freopen("a.in", "r", stdin); N = read(); for(int i = 1; i <= N; i++) insert(read()); sort(s + 1, s + tot + 1); int pre = 0, ans = 1; for(int i = 1; i <= tot; i++) if(s[i].p != s[i + 1].p || i == tot) ans = (ans * calc(pre + 1, i)) % mod, pre = i; printf("%lld", (ans + mod) % mod); } /* 3 600 1010 15010 */
作者:自为风月马前卒
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。