BZOJ1010: [HNOI2008]玩具装箱toy(dp+斜率优化)
Submit: 12451 Solved: 5407
[Submit][Status][Discuss]
Description
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.
Input
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
Output
输出最小费用
Sample Input
5 4
3
4
2
1
4
3
4
2
1
4
Sample Output
1
HINT
Source
感觉自己一直学的是假的斜率优化
推荐一篇写的比较好的博客
https://www.cnblogs.com/Paul-Guderian/p/7259491.html
#include<cstdio> #include<cstring> #include<bitset> #include<cmath> #include<algorithm> #define int long long //#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<23,stdin),p1==p2)?EOF:*p1++) char buf[1<<23],*p1=buf,*p2=buf; const int MAXN=1e6+10; inline int read() { char c=getchar();int x=0,f=1; while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();} while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();} return x*f; } int N,L; int Q[MAXN],S[MAXN],f[MAXN]; int sqr(int x){return x * x;} double X(int x){return S[x] + L;} double Y(int x){return f[x] + sqr( (S[x] + L - 1) );} double slope(int x,int y){return (Y(y) - Y(x)) / (X(y) - X(x));} main() { //freopen("a.in","r",stdin); //freopen("b.out","w",stdout); N=read(),L=read();L++; for(int i=1;i<=N;i++) S[i]=read(),S[i]+=S[i-1]; for(int i=1;i<=N;i++) S[i]+=i; int h=1,t=1; for(int i=1;i<=N;i++) { while(h<t&&slope(Q[h],Q[h+1])<2*S[i]) h++; int x=Q[h]; f[i]=f[x]+sqr(S[i]-S[x]-L); while(h<t&&slope(Q[t-1],Q[t])>slope(Q[t-1],i)) t--; Q[++t]=i; } printf("%lld",f[N]); return 0; }
作者:自为风月马前卒
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。