模板模板模板模板模板模板模板模板模板模板模板模板模板模板模板模板模板模板模板模板

网络流

匈牙利

二分图匹配

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define LL long long 
using namespace std;
const int MAXN = 1e3 + 10, INF = 1e9 + 10;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
vector<int> v[MAXN];
int N, M, E;
int link[MAXN], vis[MAXN], cur = 1;
int Aug(int x) {
    for(int i = 0; i < v[x].size(); i++) {
        int to = v[x][i];
        if(vis[to] == cur) continue;
        vis[to] = cur;
        if(!link[to] || Aug(link[to])) {
            link[to] = x;  
            return 1;
        }
    }
    return 0;
}
main() { 
#ifdef WIN32
    freopen("a.in", "r", stdin);
    //freopen("b.out", "w", stdout);
#endif
    int N = read(), M = read(), E = read();
    for(int i = 1; i <= E; i++) {
        int x = read(), y = read();
        if(x <= N && y <= M) {
            v[x].push_back(y);
            //v[y].push_back(x);            
        }
    }    
    int ans = 0;
    for(int i = 1; i <= N; i++, cur++)
        if(Aug(i)) ans++;
    printf("%d\n", ans);
    return 0;
}   
匈牙利算法

Dinic

网络最大流

// luogu-judger-enable-o2
#include<cstring>
#include<cstdio>
#define add_edge(x, y, z) AddEdge(x, y, z); AddEdge(y, x, 0);
#define min(x, y) x < y ? x : y
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 19, stdin), p1 == p2) ? EOF : *p1++)
#define rg register 
const int MAXN = 10001, INF = 1e9 + 10;
char buf[1 << 19], *p1 = buf, *p2 = buf;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9'){if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M, S, T;
struct node {
    int u, v, f, nxt;
}E[200002];
int head[MAXN], cur[MAXN], num = 0, deep[MAXN], vis[MAXN], q[MAXN];
inline void AddEdge(int x, int y, int z) {
    E[num] = (node){x, y, z, head[x]};
    head[x] = num++;
}
inline bool BFS() {
    int l = 1, r = 1; q[r++] = S;
    memset(deep, 0, sizeof(deep));
    deep[S] = 1;
    while(l < r) {
        int p = q[l++];
        for(rg int i = head[p]; i != -1; i = E[i].nxt) {
            if(E[i].f && !deep[E[i].v]) {
                deep[E[i].v] = deep[p] + 1;
                if(E[i].v == T) return deep[T];
                q[r++] = E[i].v;
            }
        }
    }
    return deep[T];
}
int DFS(int x, int flow) {
    if(x == T) return flow;
    int ansflow = 0;
    for(rg int &i = cur[x]; i != -1; i = E[i].nxt) {
        if(deep[E[i].v] == deep[x] + 1 && E[i].f) {
            int canflow = DFS(E[i].v, min(E[i].f, flow));
            flow -= canflow;
            E[i].f -= canflow; E[i ^ 1].f += canflow;
            ansflow += canflow;
            if(flow <= 0) break;
        }
    }
    return ansflow;
}
inline int Dinic() {
    int ans = 0;
    while(BFS()) {
        memcpy(cur, head, sizeof(head));
        ans += DFS(S, INF);
    }
    return ans;
}
int main() {
    #ifdef WIN32
    freopen("a.in", "r", stdin);
    #endif
    memset(head, -1, sizeof(head));
    N = read(); M = read(); S = read(); T = read();
    for(rg int i = 1; i <= M; i++) {
        rg int x = read(), y = read(), z = read();
        add_edge(x, y, z);
    }
    printf("%d", Dinic());
    return 0;
}
Dinic

最小费用最大流

最小费用最大流

// luogu-judger-enable-o2
/*

*/
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN = 1e5 + 10, INF = 1e9 + 10;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = 1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M, S, T;
struct Edge {
    int u, v, w, f, nxt;
}E[MAXN];
int head[MAXN], num = 0;
inline void AddEdge(int x, int y, int w, int f) {
    E[num] = (Edge){x, y, w, f, head[x]};
    head[x] = num++;
}
int anscost, ansflow, dis[MAXN], vis[MAXN], Pre[MAXN];
bool SPFA() {
    memset(dis, 0x3f, sizeof(dis));
    memset(vis, 0, sizeof(vis));
    queue<int> q; q.push(S); dis[S] = 0;
    while(!q.empty()) {
        int p = q.front(); q.pop(); vis[p] = 0;
        for(int i = head[p]; i !=- 1; i = E[i].nxt) {
            int to = E[i].v;
            if(dis[to] > dis[p] + E[i].w && E[i].f) {
                dis[to] = dis[p] + E[i].w;
                Pre[to] = i;
                if(!vis[to]) q.push(to), vis[to] = 1;
            }
        }
    }
    return dis[T] <= INF;
}
int F() {
    int nowflow = INF;
    for(int i = T; i != S; i = E[Pre[i]].u)
        nowflow = min(nowflow, E[Pre[i]].f);
    for(int i = T; i != S; i = E[Pre[i]].u)
        E[Pre[i]].f -= nowflow, E[Pre[i] ^ 1].f += nowflow;
    anscost += dis[T] * nowflow;
    ansflow += nowflow; 
}
void MCMF() {
    while(SPFA()) 
        F();
}
int main() {
    memset(head, -1, sizeof(head));
    N = read(); M = read(); S = read(); T = read();
    for(int i = 1; i <= M; i++) {
        int x = read(), y = read(), f = read(), w = read();
        AddEdge(x, y, w, f);
        AddEdge(y, x, -w, 0);
    }
    MCMF();
    printf("%d %d", ansflow, anscost);
    return 0;
}
/*


*/
SPFA费用流

 

 

图论

最短路

SPFA

 1 #include<cstdio>
 2 #include<queue>
 3 #include<cstring>
 4 using namespace std;
 5 const int MAXN=1000001;
 6 inline void read(int &n)
 7 {
 8     char c=getchar();bool flag=0;n=0;
 9     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
10     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
11 }
12 
13 struct node
14 {
15     int u,v,w,nxt;
16 }edge[MAXN];
17 int head[MAXN];
18 int num=1;
19 inline void add_edge(int x,int y,int z)
20 {
21     edge[num].u=x;    edge[num].v=y;
22     edge[num].w=z;    edge[num].nxt=head[x];
23     head[x]=num++;
24 }
25 int N,M,S=1;;
26 int dis[MAXN],vis[MAXN];
27 inline void SPFA()
28 {
29     queue<int>q;q.push(S);
30     while(q.size()!=0)
31     {
32         int p=q.front();
33         q.pop();vis[p]=0;
34         for(int i=head[p];i!=-1;i=edge[i].nxt)
35             if(dis[edge[i].v]>dis[edge[i].u]+edge[i].w)
36             {
37                 dis[edge[i].v]=dis[edge[i].u]+edge[i].w;
38                 if(!vis[edge[i].v])    vis[edge[i].v]=1,q.push(edge[i].v);
39             }
40     }
41 }
42 int main()/*S到其他节点的最短路*/ 
43 {
44     memset(head,-1,sizeof(head));
45     read(N);read(M);read(S);
46     for(int i=1;i<=N;i++)    dis[i]=2147483647;    dis[S]=0;
47     for(int i=1;i<=M;i++)
48     {
49         int x,y,z;read(x);read(y);read(z);
50         add_edge(x,y,z);
51     }
52     SPFA();
53     for(int i=1;i<=N;i++)    printf("%d ",dis[i]);
54     return 0;
55 }
SPFA
 1 #include<cstdio>
 2 #include<deque>
 3 #include<cstring>
 4 using namespace std;
 5 const int MAXN=1000001;
 6 inline void read(int &n)
 7 {
 8     char c=getchar();bool flag=0;n=0;
 9     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
10     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
11 }
12 
13 struct node
14 {
15     int u,v,w,nxt;
16 }edge[MAXN];
17 int head[MAXN];
18 int num=1;
19 inline void add_edge(int x,int y,int z)
20 {
21     edge[num].u=x;    edge[num].v=y;
22     edge[num].w=z;    edge[num].nxt=head[x];
23     head[x]=num++;
24 }
25 int N,M,S=1;;
26 int dis[MAXN],vis[MAXN];
27 inline void SPFA()
28 {
29     deque<int>q;q.push_front(S);
30     while(q.size()!=0)
31     {
32         int p=q.front();
33         q.pop_front();vis[p]=0;
34         for(int i=head[p];i!=-1;i=edge[i].nxt)
35             if(dis[edge[i].v]>dis[edge[i].u]+edge[i].w)
36             {
37                 dis[edge[i].v]=dis[edge[i].u]+edge[i].w;
38                 if(!vis[edge[i].v])        vis[edge[i].v]=1,q.size()!=0&&dis[edge[i].v]<dis[q.front()]?q.push_front(edge[i].v):q.push_back(edge[i].v);
39             }
40     }
41 }
42 int main()/*S到其他节点的最短路*/ 
43 {
44     memset(head,-1,sizeof(head));
45     read(N);read(M);read(S);
46     for(int i=1;i<=N;i++)    dis[i]=2147483647;    dis[S]=0;
47     for(int i=1;i<=M;i++)
48     {
49         int x,y,z;read(x);read(y);read(z);
50         add_edge(x,y,z);
51     }
52     SPFA();
53     for(int i=1;i<=N;i++)    printf("%d ",dis[i]);
54     return 0;
55 }
SPFA-SLF优化
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<ext/pb_ds/priority_queue.hpp>
 4 using namespace __gnu_pbds;
 5 const int MAXN=1000001;
 6 inline void read(int &n)
 7 {
 8     char c=getchar();bool flag=0;n=0;
 9     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
10     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
11 }
12 
13 struct node
14 {
15     int u,v,w,nxt;
16 }edge[MAXN];
17 int head[MAXN];
18 int num=1;
19 inline void add_edge(int x,int y,int z)
20 {
21     edge[num].u=x;    edge[num].v=y;
22     edge[num].w=z;    edge[num].nxt=head[x];
23     head[x]=num++;
24 }
25 int N,M,S=1;;
26 int dis[MAXN],vis[MAXN];
27 struct Compare
28 {
29     __inline__ __attribute((always_inline)) bool operator()(int a,int b)//我以前的题解提到过的强制inline的方法
30     {
31         return dis[a]>dis[b];
32     }
33 };//自定义比较器
34 inline void SPFA()
35 {
36     priority_queue<int,Compare>q;
37     q.push(S);
38     while(q.size()!=0)
39     {
40         int p=q.top();
41         q.pop();vis[p]=0;
42         for(int i=head[p];i!=-1;i=edge[i].nxt)
43             if(dis[edge[i].v]>dis[edge[i].u]+edge[i].w)
44             {
45                 dis[edge[i].v]=dis[edge[i].u]+edge[i].w;
46                 if(!vis[edge[i].v])    vis[edge[i].v]=1,q.push(edge[i].v);
47             }
48     }
49 }
50 int main()/*S到其他节点的最短路*/ 
51 {
52     memset(head,-1,sizeof(head));
53     read(N);read(M);read(S);
54     for(int i=1;i<=N;i++)    dis[i]=2147483647;    dis[S]=0;
55     for(int i=1;i<=M;i++)
56     {
57         int x,y,z;read(x);read(y);read(z);
58         add_edge(x,y,z);
59     }
60     SPFA();
61     for(int i=1;i<=N;i++)    printf("%d ",dis[i]);
62     return 0;
63 }
SPFA-pb_ds配备堆优化

Floyd

 1 #include<cstdio>
 2 #include<queue>
 3 #include<cstring>
 4 using namespace std;
 5 const int MAXN=2501;
 6 inline void read(int &n)
 7 {
 8     char c=getchar();bool flag=0;n=0;
 9     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
10     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
11 }
12 long long int map[MAXN][MAXN];
13 int main()/*S到T的最短路*/ 
14 {
15     int N,M,S,T;
16     read(N);read(M);read(S);read(T);
17     for(int i=1;i<=N;i++)    for(int j=1;j<=N;j++)    map[i][j]=0x7fffff;
18     for(int i=1;i<=M;i++)
19     {
20         int x,y,z;read(x);read(y);read(z);
21         map[x][y]=z;map[y][x]=z;
22     }
23     for(int k=1;k<=N;k++)
24         for(int i=1;i<=N;i++)
25             for(int j=1;j<=N;j++)
26                 map[i][j]=min(map[i][j],map[i][k]+map[k][j]);
27     printf("%lld ",map[S][T]);
28     return 0;
29 }
Floyd
 1 #include<cstdio>
 2 #include<queue>
 3 #include<cstring>
 4 using namespace std;
 5 const int MAXN=2501;
 6 inline void read(int &n)
 7 {
 8     char c=getchar();bool flag=0;n=0;
 9     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
10     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
11 }
12 long long int map[MAXN][MAXN];
13 int main()/*S到T的最短路*/ 
14 {
15     int N,M,S,T;
16     read(N);read(M);read(S);read(T);
17     for(int i=1;i<=N;i++)    for(int j=1;j<=N;j++)    map[i][j]=0x7fffff;
18     for(int i=1;i<=M;i++)
19     {
20         int x,y,z;read(x);read(y);read(z);
21         map[x][y]=z;map[y][x]=z;
22     }
23     for(int k=1;k<=N;k++)
24         for(int i=1;i<=N;i++)
25             for(int j=1;j<=i;j++)
26                 map[j][i]=map[i][j]=min(map[i][j],map[i][k]+map[k][j]);
27     printf("%lld ",map[S][T]);
28     return 0;
29 }
Floyd矩阵对称性优化

堆优化dijkstra

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<ext/pb_ds/priority_queue.hpp>
#define MP(x, y) make_pair(x, y)
#define Pair pair<int, int> 
using namespace std;
const int MAXN = 1e6 + 10, INF = 2147483646, B = 19;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = 1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M, S;
struct Edge {
    int u, v, w, nxt;
}E[MAXN];
int head[MAXN], num = 1;
void AddEdge(int x, int y, int z) {
    E[num] = (Edge) {x, y, z, head[x]};
    head[x] = num++;
}
int dis[MAXN], vis[MAXN];
priority_queue<Pair> q; 
void Dij() {
    for(int i = 1; i <= N; i++) dis[i] = 2147483647;
    dis[S] = 0; q.push(MP(0, S));
    while(!q.empty()) {
        int p = q.top().second; q.pop();
        if(vis[p]) continue; vis[p] = 1;
        for(int i = head[p]; i != -1; i = E[i].nxt) {
            int to = E[i].v;
            if(dis[to] > dis[p] + E[i].w) 
                dis[to] = dis[p] + E[i].w,
                q.push(MP(-dis[to], to));
        }
    }
    for(int i = 1; i <= N; i++)
        printf("%d ", dis[i]);
}
main() {
    memset(head, -1, sizeof(head));
    N = read(); M = read(); S = read();
    for(int i = 1; i <= M; i++) {
        int x = read(), y = read(), z = read();
        AddEdge(x, y, z);
    }
    Dij();
    return 0;
}
堆优化Dijkstra

最小生成树

Kruskal

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<algorithm>
 6 using namespace std;
 7 const int MAXN=400002;
 8 inline void read(int &n)
 9 {
10     char c=getchar();bool flag=0;n=0;
11     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
12     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
13 }
14 struct node
15 {
16     int u,v,w;
17 }edge[MAXN];
18 int num=1;
19 inline void add_edge(int x,int y,int z)
20 {
21     edge[num].u=x;
22     edge[num].v=y;
23     edge[num].w=z;
24     num++;
25 }
26 int comp(const node &a,const node &b)
27 {
28     return a.w<b.w;
29 }
30 int fa[MAXN];
31 int n,m;
32 int find(int x)
33 {
34     if(fa[x]==x)    return fa[x];
35     else return fa[x]=find(fa[x]);
36 }
37 int unionn(int x,int y)
38 {
39     fa[find(x)]=find(y);
40 }
41 inline void Kruskal()
42 {
43     int ans=0,tot=0;
44     sort(edge+1,edge+num,comp);
45     for(int i=1;i<=num-1;i++)
46     {
47         if(find(edge[i].u)!=find(edge[i].v))
48         {
49             unionn(edge[i].u,edge[i].v);
50             tot++;
51             ans+=edge[i].w;
52             if(tot==n-1)    
53             {
54                 printf("%d",ans);
55                 exit(0);
56             }
57         }
58     }
59     printf("orz");
60 }
61 int main()
62 {
63     read(n);read(m);
64     for(int i=1;i<=n;i++)    fa[i]=i;
65     for(int i=1;i<=m;i++)
66     {
67         int x,y,z;
68         read(x);read(y);read(z);
69         add_edge(x,y,z);
70     }
71     Kruskal();
72     return 0;
73 }
Kruskal

tarjan

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<stack>
#include<vector>
#include<queue>
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[1<<21],*p1=buf,*p2=buf;
using namespace std;
const int MAXN=1000001;
const int INF=1e9+7;
inline int read()
{
    char c=getchar();register int x=0;
    while(c<'0'||c>'9')c=getchar();
    while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
    return x;
}
char obuf[1<<24],*O=obuf;
inline void print(int x)
{
    if(x>9) print(x/10);
    *O++=x%10+'0';
}
int val[MAXN];
struct node
{
    int u,v,nxt;
}edge[MAXN];
int head[MAXN],num=1;
inline void AddEdge(int x,int y)
{
    edge[num].u=x;
    edge[num].v=y;
    edge[num].nxt=head[x];
    head[x]=num++;
}
vector<int>E[MAXN];
int color[MAXN],colornum=0,low[MAXN],dfn[MAXN],vis[MAXN],sum[MAXN],tot=0;
stack<int>s;
void tarjan(int now)
{
    dfn[now]=low[now]=++tot;
    s.push(now);vis[now]=1;
    for(int i=head[now];i!=-1;i=edge[i].nxt)
    {
        if(!dfn[edge[i].v])    
            tarjan(edge[i].v),low[now]=min(low[now],dfn[edge[i].v]);
        if(vis[edge[i].v]) 
            low[now]=min(low[now],low[edge[i].v]);
    }
    if(low[now]==dfn[now])
    {
        int h;colornum++;
        do
        {
            h=s.top();
            color[h]=colornum;
            sum[colornum]+=val[h];
            vis[h]=0;
            s.pop();
        }while(now!=h);
    }
}
int inder[MAXN],dp[MAXN],ans=0;
void Topsort()
{
    queue<int>q;
    for(int i=1;i<=colornum;i++) dp[i]=sum[i];
    for(int i=1;i<=colornum;i++)
        if(inder[i]==0)
            q.push(i);
    while(q.size()!=0)
    {
        int p=q.front();q.pop();
        for(int i=0;i<E[p].size();i++)
        {
            inder[E[p][i]]--;
            dp[E[p][i]]=max(dp[E[p][i]],dp[p]+sum[E[p][i]]);
            if(inder[E[p][i]]==0)
                q.push(E[p][i]);
        }
    }
    for(int i=1;i<=colornum;i++) ans=max(ans,dp[i]);
    printf("%d",ans);
}
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #endif
    memset(head,-1,sizeof(head));
    int N=read(),M=read();
    for(int i=1;i<=N;i++) val[i]=read();
    for(int i=1;i<=M;i++)
    {
        int x=read(),y=read();
        AddEdge(x,y);
    }
    for(int i=1;i<=N;i++)
        if(!color[i])
            tarjan(i);
    for(int i=1;i<=N;i++)
        for(int j=head[i];j!=-1;j=edge[j].nxt)
            if(color[i]!=color[edge[j].v])
                E[color[i]].push_back(color[edge[j].v]),
                inder[color[edge[j].v]]++;
    Topsort();
    
    return 0;
}
缩点

 

void tarjan(int now)
{
    dfn[now]=low[now]=++tot;
    s.push(now);
    vis[now]=1;
    for(int i=headE[now];i!=-1;i=E[i].nxt)
    {
        if(!dfn[E[i].v]) 
            tarjan(E[i].v),low[now]=min(low[now],low[E[i].v]);
        else if(vis[E[i].v]) 
            low[now]=min(low[now],dfn[E[i].v]);
    }
    if(low[now]==dfn[now])
    {
        int h;
        colornum++;
        do
        {
            h=s.top();
            color[h]=colornum;
            sum[colornum]+=money[h];
            vis[h]=0;
            s.pop();
            
        }while(h!=now);
    }
}
缩点
void tarjan(int now,int fa)
{
    dfn[now]=low[now]=++tot;
    s.push(now);
    for(int i=head[now];i!=-1;i=edge[i].nxt)
    {
        if(!dfn[edge[i].v]&&edge[i].v!=fa)
        {
            tarjan(edge[i].v,now);
            low[now]=min(low[now],low[edge[i].v]);
            if(low[edge[i].v]>=dfn[now])
            {
                memset(in,0,sizeof(in));//哪些在双联通分量里
                memset(color,0,sizeof(color));
                int h=0,cnt=0;
                do
                {
                    h=s.top();s.pop();
                    in[h]=1;
                    point[++cnt]=h;
                }while(h!=edge[i].v);//warning 
                if(cnt<=1) continue;//必须构成环 
                in[now]=1;point[++cnt]=now;
                if(MakeColor(now,1)==0)
                    for(int j=1;j<=cnt;j++)
                        ans[point[j]]=1;
            }
        }
        if(edge[i].v!=fa) low[now]=min(low[now],dfn[edge[i].v]);
    }
}
点双联通分量
void tarjan(int now,int fa)
{
    dfn[now]=low[now]=++tot;
    s.push(now);
    vis[now]=1;
    for(int i=head[now];i!=-1;i=edge[i].nxt)
    {
        if(!dfn[edge[i].v]&&edge[i].v!=fa) 
            tarjan(edge[i].v,now),low[now]=min(low[now],low[edge[i].v]);
        if(vis[edge[i].v]&&edge[i].v!=fa) low[now]=min(low[now],dfn[edge[i].v]);
    }
    if(dfn[now]==low[now])
    {
        int h=0;
        colornum++;
        do
        {
            h=s.top();
            color[h]=colornum;
            s.pop();
        }while(h!=now);
    }
}
边双联通分量
int tarjan(int now,int fa)
{
    int ch=0;
    dfn[now]=low[now]=++tot;
    for(int i=head[now];i!=-1;i=edge[i].nxt)
    {
        if(!dfn[edge[i].v])
        {
            tarjan(edge[i].v,fa);
            low[now]=min(low[now],low[edge[i].v]);
            if(low[edge[i].v]>=dfn[now]&&now!=fa) cut[now]=1;
            if(now==fa) ch++; 
        }
        low[now]=min(low[now],dfn[edge[i].v]);
    }
    if(now==fa&&ch>=2) cut[now]=1;
}
割顶
void tarjan(int now,int fa)
{
    dfn[now]=low[now]=++tot;
    for(int i=head[now];i!=-1;i=edge[i].nxt)
    {
        if(!dfn[edge[i].v]) 
        {
            deep[edge[i].v]=deep[now]+1;
            f[edge[i].v]=now;
            tarjan(edge[i].v,now);
            low[now]=min(low[now],low[edge[i].v]);
            if(low[edge[i].v]>dfn[now])
            {
                bridge[edge[i].v]=1;
                ans++;
            }
        }   
        else if(edge[i].v!=fa) low[now]=min(low[now],dfn[edge[i].v]); 
    }
}
割边

数论

 

BSGS

int BSGS(int a, int b, int p) {//a^x = b % p
    int M = ceil(sqrt(p)), base = fp(a, M), g = __gcd(a, p); if(g != 1) return -1;
    static map<int, int> mp; mp.clear();
    for(int i = 0, now = b; i <= M; i++, now = mul(now, a)) mp[now] = i + 1;
    for(int i = 1, now = base; i <= M; i++, now = mul(now, base)) if(mp[now]) return i * M - mp[now] + 1;
    return -1;
}
BSGS

 

扩展欧几里得

 

https://www.luogu.org/problem/show?pid=1082

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<algorithm>
 6 #include<queue>
 7 using namespace std;
 8 const int MAXN=100001;
 9 inline void read(int &n)
10 {
11     char c=getchar();bool flag=0;n=0;
12     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
13     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
14 }
15 int a[6],b[6];
16 int exgcd(int a,int b,int &x,int &y)
17 {
18     if(b==0)
19     {    x=1,y=0;return a;    }
20     int r=exgcd(b,a%b,x,y);
21     int tmp=x;x=y;y=tmp-(a/b)*y;
22     return r;
23 }
24 int x,y;
25 int main()
26 {
27     int a,b;
28     read(a);read(b);
29     int r=exgcd(a,b,x,y);
30     while(x<0)    x+=b;
31     printf("%d",x);
32     return 0;
33 }
exgcd
int x, y;
int exgcd(int a, int b, int &x, int &y) {
    if(b == 0) {x = 1, y = 0; return a;}
    int r = exgcd(b, a % b, x, y), tmp;
    tmp = x; x = y; y = tmp - a / b * y;
    return r;
}
int solve(int a, int b, int mod) {//ax + mody = b
    int g = exgcd(a, mod, x, y);
    if(b % g) return -1;
    x = mul(x, (b / g));
    mod = mod / g;
    while(x < 0) x += mod;
    return x % mod;
}
新版exgcd

 

CRT

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<algorithm>
 6 #include<queue>
 7 #define LL long long 
 8 using namespace std;
 9 const LL MAXN=100001;
10 const LL n=4;
11 inline void read(LL &n)
12 {
13     char c=getchar();bool flag=0;n=0;
14     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
15     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
16 }
17 LL a[MAXN],b[MAXN];
18 LL exgcd(LL a,LL b,LL &x,LL &y)
19 {
20     if(b==0)
21     {    x=1,y=0;return a;    }
22     LL r=exgcd(b,a%b,x,y);
23     LL tmp=x;x=y;y=tmp-(a/b)*y;
24     return r;
25 }
26 LL x,y;
27 LL gcd(LL a,LL b)
28 {
29     return b==0?a:gcd(b,a%b);
30 }
31 LL CRT()
32 {
33     LL M=1,ans=0;
34     for(LL i=1;i<=n;i++)    M*=a[i]; 
35     for(LL i=1;i<=n;i++)
36     {
37         LL r=exgcd(M/a[i],a[i],x,y);
38         ans=( ans+b[i]*(M/a[i])*x )%M;
39     } 
40     while(ans<0)    ans+=M;
41     return ans;
42 }
43 int main()
44 {
45     
46     for(LL i=1;i<=n;i++)
47         read(a[i]),read(b[i]);
48     printf("%lld",CRT());
49     return 0;
50 }
CRT

扩展CRT

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<algorithm>
 6 #include<queue>
 7 using namespace std;
 8 const int MAXN=100001;
 9 const int n=4;
10 inline void read(int &n)
11 {
12     char c=getchar();bool flag=0;n=0;
13     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
14     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
15 }
16 int a[MAXN],b[MAXN];
17 int exgcd(int a,int b,int &x,int &y)
18 {
19     if(b==0)
20     {    x=1,y=0;return a;    }
21     int r=exgcd(b,a%b,x,y);
22     int tmp=x;x=y;y=tmp-(a/b)*y;
23     return r;
24 }
25 int x,y;
26 int gcd(int a,int b)
27 {
28     return b==0?a:gcd(b,a%b);
29 }
30 inline int EX_CRT()
31 {
32     /*
33         x+a1*y1=b1   1
34         x+a2*y2=b2   2
35         x+a3*y3=b3   3
36         求这个方程的解x 
37     */
38     int M=a[1],R=b[1],x,y;
39     // M=LCM(a1,a2)
40     // R=bi-b1
41     for(int i=2;i<=n;i++)
42     {
43         
44         /*
45         a1*y1-a2*y2=b2-b1
46         a*x  +b*y  =gcd(a,b)
47         这样求出y1之后
48         带回得到对于1,2两个方程的解x0=b1-y1*a1
49         */
50         int r=exgcd(M,a[i],x,y);
51         if( (R-b[i])%r!=0)    return -1;
52         /*   R-b[i]相当于b2-b1
53              方程有解的条件(b2-b1)%gcd(a,b) ==0 */
54         
55         x=(R-b[i])/r*x%a[i];//**** 
56         
57         
58         R=R-x*M;//x0=b1-y1*a1
59         M=M/r*a[i];// 新的模数 
60         R=R%M;//R=X mod M
61     }
62     return (R%M+M)%M;
63 }
64 int main()
65 {
66     
67     for(int i=1;i<=n;i++)
68         read(a[i]),read(b[i]);
69     printf("%d",EX_CRT());
70     return 0;
71 }
EX_CRT

快速幂

 1 #include<cstdio>
 2 #include<deque>
 3 #include<cstring>
 4 #define LL long long 
 5 using namespace std;
 6 const LL MAXN=1000001;
 7 inline void read(LL &n)
 8 {
 9     char c=getchar();bool flag=0;n=0;
10     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
11     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
12 }
13 LL a,p,mod,base;
14 LL fastpow(LL a,LL p)
15 {
16     for(base=1;p;p>>=1)        p&1?base=(base*a)%mod,a=(a*a)%mod:a=(a*a)%mod;
17     return base;
18 }
19 int main()
20 {
21 
22     read(a);read(p);read(mod);
23     printf("%lld^%lld mod %lld=%lld",a,p,mod,fastpow(a,p));
24     return 0;
25 }
快速幂

卡特兰数

https://www.luogu.org/problem/show?pid=1976

 1 #include<cstdio>
 2 const int MAXN=100001;
 3 inline int read()
 4 {
 5     char c=getchar();int x=0,flag=1;
 6     while(c<'0'||c>'9')    {if(c=='-')    flag=-1;c=getchar();}
 7     while(c>='0'&&c<='9')    x=x*10+c-48,c=getchar();return x*flag;
 8 }
 9 int n;
10 long long dp[MAXN];
11 int main()
12 {
13     n=read();
14     dp[0]=1;
15     int ans=0;
16     for(int i=1;i<=n;i++)
17         for(int j=0;j<i;j++)
18             dp[i]=(dp[i]+(dp[j]*dp[i-j-1])%100000007)%100000007;
19     printf("%lld",dp[n]%100000007);
20     return 0;
21 }
Catalan数

 

 

字符串

KMP

洛谷P3375 【模板】KMP字符串匹配

#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN = 1e6 + 10;
char s1[MAXN], s2[MAXN];
int N1, N2;
int fail[MAXN];
void GetFail() {
    int now = 0; 
    for(int i = 2; i <= N2; i++) {
        while(now && s2[i] != s2[now + 1]) now = fail[now];
        if(s2[i] == s2[now + 1]) now++;
        fail[i] = now;
    }
}
void KMP() {
    int now = 0;
    for(int i = 1; i <= N1; i++) {
        while(now && s1[i] != s2[now + 1]) now = fail[now];
        if(s1[i] == s2[now + 1]) now++;
        if(now == N2) 
            printf("%d\n", i - N2 + 1), now= fail[now];
    }
}
int main() {
#ifdef WIN32
    freopen("a.in", "r", stdin);
    //freopen("a.out", "w", stdout);
#endif
    scanf("%s %s", s1 + 1, s2 + 1);
    N1 = strlen(s1 + 1); N2 = strlen(s2 + 1);
    GetFail();
    KMP();
    for(int i = 1; i <= N2; i++) printf("%d ", fail[i]);
    return 0;
}
KMP

后缀数组

http://www.cnblogs.com/zwfymqz/p/8430014.html

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int MAXN=2*1e6+10;
int sa[MAXN],rak[MAXN],tp[MAXN],tax[MAXN],a[MAXN],N,M,height[MAXN];
char s[MAXN];
void Qsort()
{
    for(int i=1;i<=M;i++) tax[i]=0;
    for(int i=1;i<=N;i++) tax[rak[i]]++;
    for(int i=1;i<=M;i++) tax[i]+=tax[i-1];
    for(int i=N;i>=1;i--) sa[ tax[rak[tp[i]]]-- ] = tp[i];
}
void Ssort()
{
    M=127;
    for(int i=1;i<=N;i++) rak[i]=a[i],tp[i]=i;Qsort();
    for(int w=1,p=1; p<N ; w<<=1,M=p)
    {
        p=0;
        for(int i=N-w+1;i<=N;i++) tp[++p]=i;
        for(int i=1;i<=N;i++) if(sa[i]>w) tp[++p]=sa[i]-w;
        Qsort();
        swap(tp,rak);
        rak[sa[1]]=1;p=1;
        for(int i=2;i<=N;i++) rak[sa[i]] = (tp[sa[i]]==tp[sa[i-1]]&&tp[sa[i]+w]==tp[sa[i-1]+w])?p:++p;
    }
    int j,k=0;
    for(int i=1;i<=N;height[rak[i++]]=k)
        for(k=k?k-1:k,j=sa[rak[i]-1];a[i+k]==a[j+k];++k );
    for(int i=0;i<=N;i++)
    {
        for(int j=height[i]+1;;j++)
        {
            int tot=1;
            for(int k=i+1;height[k]>=j;++k,++tot);
            if(tot>1) printf("%d\n",tot);
            else break;
        }
    }
}
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    int Meiyong;
    cin>>Meiyong;
    scanf("%s",s);
    N=strlen(s);
    for(int i=1;i<=N;i++) a[i]=s[i-1];
    Ssort();
    return 0;
}
SA

后缀自动机

洛谷P3804 【模板】后缀自动机

// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<vector>
#define LL long long 
using namespace std;
const int MAXN = 2 * 1e6 + 10;
char s[MAXN];
int N;
int last = 1, root = 1, tot = 1, fa[MAXN], ch[MAXN][26], len[MAXN], siz[MAXN];
void insert(int x) {
    int now = ++tot, pre = last; last = now;
    //last代表全串的点,这里不能简单的写tot - 1,因为当第三种情况时候会增加新的节点 
    len[now] = len[pre] + 1; siz[now] = 1;
    //在新加入节点后,最长的后缀的right集合大小肯定为1 
    for(; pre && !ch[pre][x]; pre = fa[pre]) ch[pre][x] = now;
    if(!pre) fa[now] = root;
    else {
        int q = ch[pre][x];//q是pre的祖先 pre -> q
        //说明pre有一条x转移边 q = pre + x
        if(len[q] == len[pre] + 1) fa[now] = q;
        else {//right集合不完全重合 
            int nows = ++tot; len[nows] = len[pre] + 1;
            //这里的nows用于接收len[q] <= len[pre] + 1的点
            //q用于接收len[q] > len[pre] + 1 的点 
            memcpy(ch[nows], ch[q], sizeof(ch[q])); 
            //这里ch[q]能转移到的,ch[nows]也一定能转移到,因为ch[nows]表示ch[q]去掉前几个字符后的串 
            fa[nows] = fa[q]; fa[q] = fa[now] = nows;
            //以前的fa[q]满足max[fa[q]] = min[q] + 1,而nows表示的串长度一定包含q里面最小的,因此fa[nows]的爸爸就是fa[q]
            //此时的nows表示的节点一定是q,now表示的节点的后缀,
            for(; pre && ch[pre][x] == q; pre = fa[pre]) ch[pre][x] = nows; 
            //此时的pre保证可以走到q,那么pre的祖先一定是pre的后缀,他们的长度一定都是小于等于nows的 
        }
    }
}
vector<int> v[MAXN];
LL ans = 0;
void dfs(int x) {
    for(int i = 0; i < v[x].size(); i++) {
        int to = v[x][i];
        dfs(to), siz[x] += siz[to];
    }
    //是否存在父亲出现了但是儿子没出现的情况? 
    if(siz[x] > 1) ans = max(ans, 1ll * siz[x] * len[x]);
}

int main() {
#ifdef WIN32
    freopen("a.in", "r", stdin);
#endif
    scanf("%s", s + 1);
    N = strlen(s + 1);
    for(int i = 1; i <= N; i++) insert(s[i] - 'a');
    for(int i = 2; i <= tot; i++) v[fa[i]].push_back(i);
    dfs(root);
    printf("%lld", ans);
    return 0;
}
后缀自动机

AC自动机

洛谷P3796 【模板】AC自动机(加强版)

// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
const int MAXN = 1e6 + 10, B = 26;
int T; 
char s[201][75], a[MAXN];
int N; 
int fail[MAXN], ch[MAXN][27], val[MAXN], root = 0, tot = 0, sum[MAXN];
void insert(char *s, int I) {
    int N = strlen(s + 1);
    int now = root;
    for(int i = 1; i <= N; i++) {
        int x = s[i] - 'a';
        if(!ch[now][x]) ch[now][x] = ++tot;
        now = ch[now][x];
    }
    val[now] = I;
}
void GetFail() {
    queue<int> q;
    for(int i = 0; i < B; i++) if(ch[root][i]) q.push(ch[root][i]);
    while(!q.empty()) {
        int p = q.front(); q.pop();
        for(int i = 0; i < B; i++) 
            if(ch[p][i]) fail[ch[p][i]] = ch[fail[p]][i], q.push(ch[p][i]);
            else ch[p][i] = ch[fail[p]][i];
    }
}
int main() {
#ifdef WIN32
    freopen("a.in", "r", stdin);
#endif
    while(scanf("%d", &T) && T) {
        memset(fail, 0, sizeof(fail)); memset(ch, 0, sizeof(ch)); 
        memset(val, 0, sizeof(val)); memset(fail, 0, sizeof(fail));
        memset(sum, 0, sizeof(sum)); memset(s, 0, sizeof(s));
        for(int i = 1; i <= T; i++) scanf("%s", s[i] + 1), insert(s[i], i);
        GetFail();
        scanf("%s", a + 1);
        int N = strlen(a + 1), now = root;
        for(int i = 1; i <= N; i++) {
            now = ch[now][a[i] - 'a'];
            for(int t = now; t; t = fail[t]) if(val[t]) sum[val[t]]++;
        }
        int ans = 0;
        for(int i = 1; i <= T; i++) ans = max(ans, sum[i]);
        printf("%d\n", ans);
        for(int i = 1; i <= T; i++)
            if(sum[i] == ans)
                printf("%s\n", s[i] + 1);
    } 
    return 0;
}
AC自动机

数据结构

 1 struct S
 2 {
 3     int pos,val;
 4     S(){    pos=0;val=0;    }    
 5     S(int a,int b){    pos=a,val=b;    }
 6     
 7 };
 8 bool operator <(const S &a,const S &b)
 9 {
10     return a.pos>b.pos;
11 }//按照位置从小到大排序
12 priority_queue<S>q;
priority

单调队列

https://www.luogu.org/problem/show?pid=1886

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<deque>
 6 using namespace std;
 7 const int MAXN=1000010;
 8 inline void read(int &n)
 9 {
10     char c=getchar();n=0;bool flag=0;
11     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
12     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
13 }
14 struct node
15 {
16     int pos,val;
17     node(){pos=val=0;}
18     node(int a,int b)    {    pos=a;val=b;    }
19 };
20 deque<node>q;
21 int a[MAXN];
22 int main()
23 {
24     int n,k;
25     read(n);read(k);
26     for(int i=1;i<=n;i++)    read(a[i]);
27     for(int i=1;i<=n;i++)
28     {
29         while(q.size()>0&&q.front().pos<=(i-k))        q.pop_front();
30         while(q.size()>0&&a[i]<q.back().val)        q.pop_back();
31         q.push_back(node(i,a[i]));
32         if(i>=k)    printf("%d ",q.front().val);
33     }
34     printf("\n");
35     while(q.size()!=0)    q.pop_front();
36     for(int i=1;i<=n;i++)
37     {
38         while(q.size()>0&&q.front().pos<=(i-k))        q.pop_front();
39         while(q.size()>0&&a[i]>q.back().val)        q.pop_back();
40         q.push_back(node(i,a[i]));
41         if(i>=k)    printf("%d ",q.front().val);
42     }
43     return 0;
44 }
STL单调队列

线段树

单点修改&&区间求和http://codevs.cn/problem/1080/

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #define ls k<<1
 6 #define rs k<<1|1
 7 using namespace std;
 8 const int MAXN=400400;
 9 inline void read(int &n)
10 {
11     char c=getchar();n=0;bool flag=0;
12     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
13     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
14 }
15 struct node
16 {
17     int l,r,w,f;
18 }tree[MAXN];
19 int ans=0;
20 inline void update(int k)
21 {    tree[k].w=tree[ls].w+tree[rs].w;    }
22 inline void Build_Tree(int ll,int rr,int k)
23 {
24     tree[k].l=ll;tree[k].r=rr;
25     if(ll==rr)
26     {    read(tree[k].w);    return ;    }
27     int mid=tree[k].l+tree[k].r>>1;
28     Build_Tree(ll,mid,ls);    Build_Tree(mid+1,rr,rs);
29     update(k);
30 }
31 void Point_Add(int k,int pos,int val)
32 {
33     if(tree[k].l==tree[k].r)
34     {    tree[k].w+=val;    return ;    }
35     int mid= tree[k].l+tree[k].r>>1;
36     if(pos<=mid)    Point_Add(ls,pos,val);
37     else             Point_Add(rs,pos,val);
38     update(k);
39 }
40 void Interval_Sum(int k,int ll,int rr)
41 {
42     if(ll<=tree[k].l&&tree[k].r<=rr)
43     {    ans+=tree[k].w;    return ;    }
44     int mid=tree[k].l+tree[k].r>>1;
45     if(ll<=mid)    Interval_Sum(ls,ll,rr);
46     if(rr>mid)    Interval_Sum(rs,ll,rr);
47 }
48 int main()
49 {
50     int n,m;
51     read(n);
52     Build_Tree(1,n,1);
53     read(m);
54     for(int i=1;i<=m;i++)
55     {
56         int how;read(how);
57         if(how==1)
58         {
59             int pos,val;    read(pos);read(val);
60             Point_Add(1,pos,val);
61         }
62         else
63         {
64             int a,b;read(a);read(b);    ans=0;
65             Interval_Sum(1,a,b);
66             printf("%d\n",ans);
67         }
68     }
69     return 0;
70 }
单点修改&&区间求和

 区间修改&&区间求和http://codevs.cn/problem/1082/

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #define ls k<<1
 6 #define rs k<<1|1
 7 #define LL long long 
 8 using namespace std;
 9 const LL MAXN=800400;
10 inline void read(LL &n)
11 {
12     char c=getchar();n=0;bool flag=0;
13     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
14     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
15 }
16 struct node
17 {
18     LL l,r,w,f;
19 }tree[MAXN];
20 LL ans=0;
21 inline void update(LL k)
22 {    tree[k].w=tree[ls].w+tree[rs].w;    }
23 inline void Build_Tree(LL ll,LL rr,LL k)
24 {
25     tree[k].l=ll;tree[k].r=rr;
26     if(ll==rr)
27     {    read(tree[k].w);    return ;    }
28     LL mid=tree[k].l+tree[k].r>>1;
29     Build_Tree(ll,mid,ls);    Build_Tree(mid+1,rr,rs);
30     update(k);
31 }
32 inline void down(LL k)
33 {
34     tree[ls].w+=(tree[ls].r-tree[ls].l+1)*tree[k].f;
35     tree[rs].w+=(tree[rs].r-tree[rs].l+1)*tree[k].f;
36     tree[ls].f+=tree[k].f;
37     tree[rs].f+=tree[k].f;
38     tree[k].f=0;
39 }
40 inline void Interval_Add(LL k,LL ll,LL rr,LL val)
41 {
42     if(ll<=tree[k].l&&tree[k].r<=rr)
43     {
44         tree[k].w+=(tree[k].r-tree[k].l+1)*val;
45         tree[k].f+=val;
46         return ;
47     }
48     if(tree[k].f)    down(k);
49     LL mid=tree[k].l+tree[k].r>>1;
50     if(ll<=mid)    Interval_Add(ls,ll,rr,val);
51     if(rr>mid)    Interval_Add(rs,ll,rr,val);
52     update(k);
53 }
54 inline void Interval_Sum(LL k,LL ll,LL rr)
55 {
56     if(ll<=tree[k].l&&tree[k].r<=rr)
57     {
58         ans+=tree[k].w;
59         return ;
60     }
61     if(tree[k].f)    down(k);
62     LL mid=tree[k].l+tree[k].r>>1;
63     if(ll<=mid)    Interval_Sum(ls,ll,rr);
64     if(rr>mid)    Interval_Sum(rs,ll,rr);
65 }
66 int main()
67 {
68     LL n,m;
69     read(n);
70     Build_Tree(1,n,1);
71     read(m);
72     for(LL i=1;i<=m;i++)
73     {
74         LL how;read(how);
75         if(how==1)
76         {
77             LL x,y,val;read(x);read(y);read(val);
78             Interval_Add(1,x,y,val);
79         }
80         else
81         {
82             LL x,y;read(x);read(y);
83             ans=0;
84             Interval_Sum(1,x,y);
85             printf("%lld\n",ans);
86         }
87     }
88     return 0;
89 }
View Code

区间修改&&单点修改http://codevs.cn/problem/1081/

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #define ls k<<1
 6 #define rs k<<1|1
 7 using namespace std;
 8 const int MAXN=400400;
 9 inline void read(int &n)
10 {
11     char c=getchar();n=0;bool flag=0;
12     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
13     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
14 }
15 struct node
16 {
17     int l,r,w,f;
18 }tree[MAXN];
19 int ans=0;
20 inline void update(int k)
21 {    tree[k].w=tree[ls].w+tree[rs].w;    }
22 inline void Build_Tree(int ll,int rr,int k)
23 {
24     tree[k].l=ll;tree[k].r=rr;
25     if(ll==rr)
26     {    read(tree[k].w);    return ;    }
27     int mid=tree[k].l+tree[k].r>>1;
28     Build_Tree(ll,mid,ls);    Build_Tree(mid+1,rr,rs);
29     update(k);
30 }
31 inline void down(int k)
32 {
33     tree[ls].w+=(tree[ls].r-tree[ls].l+1)*tree[k].f;
34     tree[rs].w+=(tree[rs].r-tree[rs].l+1)*tree[k].f;
35     tree[ls].f+=tree[k].f;
36     tree[rs].f+=tree[k].f;
37     tree[k].f=0;
38     update(k);
39     return ;
40 }
41 void Interval_Add(int k,int ll,int rr,int val)
42 {
43     if(ll<=tree[k].l&&tree[k].r<=rr)
44     {
45         tree[k].w=tree[k].w+(tree[k].r-tree[k].l+1)*val;
46         tree[k].f+=val;
47         return ;
48     }
49     if(tree[k].f)    down(k);
50     int mid=tree[k].l+tree[k].r>>1;
51     if(ll<=mid)    Interval_Add(ls,ll,rr,val);
52     if(rr>mid)    Interval_Add(rs,ll,rr,val);
53     update(k);
54 }
55 void Point_Ask(int k,int pos)
56 {
57     if(tree[k].l==tree[k].r)
58     {
59         ans=tree[k].w;
60         return ;
61     }
62     if(tree[k].f)    down(k);
63     int mid=tree[k].l+tree[k].r>>1;
64     if(pos<=mid)    Point_Ask(ls,pos);
65     else             Point_Ask(rs,pos);
66 }
67 int main()
68 {
69     int n,m;
70     read(n);
71     Build_Tree(1,n,1);
72     read(m);
73     for(int i=1;i<=m;i++)
74     {
75         int how;read(how);
76         if(how==1)
77         {
78             int x,y,val;read(x);read(y);read(val);
79             Interval_Add(1,x,y,val);
80         }
81         else
82         {
83             int pos;read(pos);
84             ans=0;
85             Point_Ask(1,pos);
86             printf("%d\n",ans);
87         }
88     }
89     return 0;
90 }
View Code

 区间修改&&区间覆盖&&区间求和&&最大值&&&最小值http://codevs.cn/problem/4927/

  1 #include<iostream>
  2 #include<cstdio>
  3 #include<cstring>
  4 #include<cmath>
  5 #define LL long long 
  6 #define ls k<<1
  7 #define rs k<<1|1
  8 using namespace std;
  9 const LL MAXN=400400;
 10 const LL INF =0x7fffff;
 11 inline void read(LL &n)
 12 {
 13     char c=getchar();n=0;bool flag=0;
 14     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
 15     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
 16 }
 17 struct node
 18 {
 19     LL l,r,w,Max,Min,Set,Add;
 20     bool V;
 21 }tree[MAXN];
 22 LL n,m;
 23 LL ans=0;
 24 inline void update(LL k)
 25 {
 26     tree[k].w=tree[ls].w+tree[rs].w;
 27     tree[k].Max=max(tree[ls].Max,tree[rs].Max);
 28     tree[k].Min=min(tree[ls].Min,tree[rs].Min);
 29 }
 30 void Build_Tree(LL ll,LL rr,LL k)
 31 {
 32     tree[k].l=ll;tree[k].r=rr;
 33     if(tree[k].l==tree[k].r)
 34     {
 35         read(tree[k].w);
 36         tree[k].Max=tree[k].w;
 37         tree[k].Min=tree[k].w;
 38         return ;
 39     }
 40     LL mid=tree[k].l+tree[k].r>>1;
 41     Build_Tree(ll,mid,ls);
 42     Build_Tree(mid+1,rr,rs);
 43     update(k);
 44 }
 45 void down(LL k)
 46 {
 47     if(tree[k].V)
 48     {
 49         tree[ls].Add=0;
 50         tree[ls].V=1;
 51         tree[ls].w=(tree[ls].r-tree[ls].l+1)*tree[k].Set;
 52         tree[ls].Max=tree[ls].Min=tree[ls].Set=tree[k].Set;
 53         
 54         tree[rs].Add=0;
 55         tree[rs].V=1;
 56         tree[rs].w=(tree[rs].r-tree[rs].l+1)*tree[k].Set;
 57         tree[rs].Max=tree[rs].Min=tree[rs].Set=tree[k].Set;
 58         
 59         tree[k].Set=tree[k].V=0;
 60     }
 61     if(tree[k].Add)
 62     {
 63         tree[ls].w+=(tree[ls].r-tree[ls].l+1)*tree[k].Add;
 64         tree[ls].Add+=tree[k].Add;
 65         tree[ls].Max+=tree[k].Add;
 66         tree[ls].Min+=tree[k].Add;
 67         
 68         tree[rs].w+=(tree[rs].r-tree[rs].l+1)*tree[k].Add;
 69         tree[rs].Add+=tree[k].Add;
 70         tree[rs].Max+=tree[k].Add;
 71         tree[rs].Min+=tree[k].Add;
 72         tree[k].Add=0;    
 73     }
 74     
 75 }
 76 void Interval_Add(LL k,LL ll,LL rr,LL val)
 77 {
 78     if(ll<=tree[k].l&&tree[k].r<=rr)
 79     {
 80         tree[k].w+=(tree[k].r-tree[k].l+1)*val;
 81         tree[k].Add+=val;
 82         tree[k].Max+=val;
 83         tree[k].Min+=val;
 84         return ;
 85     }
 86     if(tree[k].Add||tree[k].V)    down(k);
 87     LL mid=tree[k].r+tree[k].l>>1;
 88     if(ll<=mid)    Interval_Add(ls,ll,rr,val);
 89     if(rr>mid)    Interval_Add(rs,ll,rr,val);
 90     update(k);
 91 }
 92 void Interval_Change(LL k,LL ll,LL rr,LL val)
 93 {
 94     if(ll<=tree[k].l&&tree[k].r<=rr)
 95     {
 96         tree[k].Max=tree[k].Min=val;
 97         tree[k].Set=val;tree[k].V=1;
 98         tree[k].w=(tree[k].r-tree[k].l+1)*val;
 99         tree[k].Add=0;
100         return ;
101     }
102     if(tree[k].Add||tree[k].V)    down(k);
103     LL mid=tree[k].r+tree[k].l>>1;
104     if(ll<=mid)    Interval_Change(ls,ll,rr,val);
105     if(rr>mid)    Interval_Change(rs,ll,rr,val);
106     update(k);
107 }
108 void Interval_Sum(LL k,LL ll,LL rr)
109 {
110     if(ll<=tree[k].l&&tree[k].r<=rr)
111     {
112         ans+=tree[k].w;
113         return ;
114     }
115     if(tree[k].Add||tree[k].V)    down(k);
116     LL mid=tree[k].r+tree[k].l>>1;
117     if(ll<=mid)    Interval_Sum(ls,ll,rr);
118     if(rr>mid)    Interval_Sum(rs,ll,rr);
119 }
120 void Interval_Max(LL k,LL ll,LL rr)
121 {
122     if(ll<=tree[k].l&&tree[k].r<=rr)
123     {
124         ans=max(ans,tree[k].Max);
125         return ;
126     }
127     if(tree[k].Add||tree[k].V)    down(k);
128     LL mid=tree[k].r+tree[k].l>>1;
129     if(ll<=mid)    Interval_Max(ls,ll,rr);
130     if(rr>mid)    Interval_Max(rs,ll,rr);
131 }
132 void Interval_Min(LL k,LL ll,LL rr)
133 {
134     if(ll<=tree[k].l&&tree[k].r<=rr)
135     {
136         ans=min(ans,tree[k].Min);
137         return ;
138     }
139     if(tree[k].Add||tree[k].V)    down(k);
140     LL mid=tree[k].r+tree[k].l>>1;
141     if(ll<=mid)    Interval_Min(ls,ll,rr);
142     if(rr>mid)    Interval_Min(rs,ll,rr);
143 }
144 int main()
145 {
146     read(n);read(m);
147     Build_Tree(1,n,1);
148     for(LL i=1;i<=m;i++)
149     {
150         char how[5];
151         scanf("%s",how);
152         if(how[0]=='a')//区间加 
153         {
154             LL x,y,val;read(x);read(y);read(val);
155             Interval_Add(1,x,y,val);
156         }
157         else if(how[0]=='s'&&how[1]=='e')//区间赋值 
158         {
159             LL x,y,val;read(x);read(y);read(val);
160             Interval_Change(1,x,y,val);
161         }
162         else if(how[0]=='s'&&how[1]=='u')//区间求和 
163         {
164             LL x,y;read(x);read(y);ans=0;
165             Interval_Sum(1,x,y);
166             printf("%lld\n",ans);
167         }
168         else if(how[0]=='m'&&how[1]=='a')//区间最大值 
169         {
170             LL x,y;read(x);read(y);ans=0;
171             Interval_Max(1,x,y);
172             printf("%lld\n",ans);
173         }
174         else if(how[0]=='m'&&how[1]=='i')// 区间最小值 
175         {
176             LL x,y;read(x);read(y);ans=INF;
177             Interval_Min(1,x,y);
178             printf("%lld\n",ans);
179         } 
180     }
181     return 0;
182 }
View Code

区间乘区间加区间修改

// luogu-judger-enable-o2
// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#include<cmath>
#include<algorithm>
#define ls k<<1
#define rs k<<1|1
#define int long long 
using namespace std;
const int MAXN=1e6+10;
inline int read()
{
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int N,M,mod;
namespace SegmentTree
{
    struct node
    {
        int mul,add,sum,l,r,siz;
    }T[MAXN];
    void update(int k)
    {
        T[k].sum=(T[ls].sum%mod+T[rs].sum%mod)%mod;
    }
    void ps(int x,int f)
    {
        T[x].mul=(T[x].mul%mod*T[f].mul%mod)%mod;
        T[x].add=(T[x].add*T[f].mul)%mod;
        T[x].add=(T[x].add+T[f].add)%mod;
        T[x].sum=(T[x].sum%mod*T[f].mul%mod)%mod;
        T[x].sum=(T[x].sum+T[f].add%mod*T[x].siz)%mod;
    }
    void pushdown(int k)
    {
        if(T[k].add==0&&T[k].mul==1) return ;
        ps(ls,k);
        ps(rs,k);
        T[k].add=0;
        T[k].mul=1;
    }
    void Build(int k,int ll,int rr)
    {
        T[k].l=ll;T[k].r=rr;T[k].siz=rr-ll+1;T[k].mul=1;
        if(ll==rr)
        {
            T[k].sum=read()%mod;
            return ;
        }
        int mid=ll+rr>>1;
        Build(ls,ll,mid);
        Build(rs,mid+1,rr);
        update(k);
    }
    void IntervalMul(int k,int ll,int rr,int val)
    {
        if(ll<=T[k].l&&T[k].r<=rr)
        {
            T[k].sum=(T[k].sum*val)%mod;
            T[k].mul=(T[k].mul*val)%mod;
            T[k].add=(T[k].add*val)%mod;
            return ;
        }
        pushdown(k);
        int mid=T[k].l+T[k].r>>1;
        if(ll<=mid) IntervalMul(ls,ll,rr,val);
        if(rr>mid)  IntervalMul(rs,ll,rr,val);
        update(k);
    }
    void IntervalAdd(int k,int ll,int rr,int val)
    {
        if(ll<=T[k].l&&T[k].r<=rr)
        {
            T[k].sum=(T[k].sum+T[k].siz*val)%mod;
            T[k].add=(T[k].add+val)%mod;
            return ;
        }
        pushdown(k);
        int mid=T[k].l+T[k].r>>1;
        if(ll<=mid) IntervalAdd(ls,ll,rr,val);
        if(rr>mid)  IntervalAdd(rs,ll,rr,val);
        update(k);
    }
    int IntervalSum(int k,int ll,int rr)
    {
        int ans=0;
        if(ll<=T[k].l&&T[k].r<=rr)
        {
            ans=(ans+T[k].sum)%mod;
            return ans;
        }
        pushdown(k);
        int mid=T[k].l+T[k].r>>1;
        if(ll<=mid) ans=(ans+IntervalSum(ls,ll,rr))%mod;
        if(rr>mid)  ans=(ans+IntervalSum(rs,ll,rr))%mod;
        return ans%mod;
    }    
}

main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #endif
    N=read();M=read();mod=read();
    SegmentTree::Build(1,1,N);
    while(M--)
    {
        int opt=read();
        if(opt==1)
        {
            int l=read(),r=read(),val=read()%mod;
             SegmentTree::IntervalMul(1,l,r,val);
        }
        else if(opt==2)
        {
            int l=read(),r=read(),val=read()%mod;
             SegmentTree::IntervalAdd(1,l,r,val);
        }
        else if(opt==3)
        {
            int l=read(),r=read();
            printf("%lld\n", SegmentTree::IntervalSum(1,l,r)%mod);
        }
    }
    return 0;
}
View Code

 

树状数组

单点修改&&区间查询https://www.luogu.org/problem/show?pid=3374

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #define lb(x) (x&(-x))
 6 using namespace std;
 7 const int MAXN=500001;
 8 inline int read()
 9 {
10     char c=getchar();int x=0;int f=1;
11     while(c<'0'||c>'9')    {if(c=='-')    f=-1;c=getchar();}
12     while(c>='0'&&c<='9')    x=x*10+c-48,c=getchar();return x*f;
13 }
14 int tree[MAXN];
15 int n=read(),m=read();
16 inline void Point_Add(int pos,int val)
17 {
18     while(pos<=n)    tree[pos]+=val,pos+=lb(pos);
19 }
20 inline int Interval_Sum(int pos)
21 {
22     int ans=0;
23     while(pos)    ans+=tree[pos],    pos-=lb(pos);    
24     return ans;
25 }
26 int main()
27 {
28     
29     for(int i=1;i<=n;i++)
30     {
31         int p=read();Point_Add(i,p);
32     }
33     for(int i=1;i<=m;i++)
34     {
35         int how=read(),x=read(),y=read();
36         if(how==1)    Point_Add(x,y);
37         else printf("%d\n",Interval_Sum(y)-Interval_Sum(x-1));
38     }
39     return 0;
40 }
View Code

区间修改&&单点查询https://www.luogu.org/problem/show?pid=3368

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #define lb(x) (x&(-x))
 6 using namespace std;
 7 const int MAXN=500001;
 8 inline int read()
 9 {
10     char c=getchar();int x=0;int f=1;
11     while(c<'0'||c>'9')    {if(c=='-')    f=-1;c=getchar();}
12     while(c>='0'&&c<='9')    x=x*10+c-48,c=getchar();return x*f;
13 }
14 int tree[MAXN];
15 int n=read(),m=read();
16 inline void Point_Add(int pos,int val)
17 {
18     while(pos<=n)    tree[pos]+=val,pos+=lb(pos);
19 }
20 inline int Interval_Sum(int pos)
21 {
22     int ans=0;
23     while(pos)    ans+=tree[pos],    pos-=lb(pos);    
24     return ans;
25 }
26 int main()
27 {
28     int pre=0;
29     for(int i=1;i<=n;i++)
30     {
31         int p=read();Point_Add(i,p-pre);
32         pre=p;
33     }
34     for(int i=1;i<=m;i++)
35     {
36         int how=read(),x=read(),y,val;
37         if(how==1)    y=read(),val=read(),Point_Add(x,val),Point_Add(y+1,-val);
38         else printf("%d\n",Interval_Sum(x));
39     }
40     return 0;
41 }
View Code

 

平衡树

splay

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 4 * 1e5 + 10, INF = 1e9;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int T;
#define ls(x) ch[x][0]
#define rs(x) ch[x][1]
#define root ch[0][1]
int ch[MAXN][2], fa[MAXN], rev[MAXN], siz[MAXN], val[MAXN], tot = 0;
int ident(int x) { return ch[fa[x]][0] == x ? 0 : 1;}
void connect(int x, int _fa, int how) { fa[x] = _fa; ch[fa[x]][how] = x;}
void update(int x) { siz[x] = siz[ls(x)] + siz[rs(x)] + rev[x];}
void rotate(int x) {
    int Y = fa[x], R = fa[Y];
    int Yson = ident(x), Rson = ident(Y);
    int B = ch[x][Yson ^ 1];
    connect(x, R, Rson);
    connect(Y, x, Yson ^ 1);
    connect(B, Y, Yson);
    update(Y); update(x);
}
void splay(int x, int to) {
    to = fa[to];
    while(fa[x] != to) {
        int y = fa[x];
        if(fa[y] == to) rotate(x);
        else if(ident(x) == ident(y)) rotate(y), rotate(x);
        else rotate(x), rotate(x);
    }
}
int NewNode(int _fa, int v) {
    fa[++tot]= _fa;
    siz[tot] = rev[tot] = 1;
    val[tot] = v;
    return tot;
}
void insert(int v) {
    if(root == 0) {root = NewNode(0, v); return ;}
    int now = root;
    while(now) {
        siz[now]++;
        if(val[now] == v) {rev[now]++; splay(now, root); return ;}
        int nxt = v > val[now];
        if(!ch[now][nxt]) {ch[now][nxt] = NewNode(now, v); splay(now, root); return ;}
        now = ch[now][nxt];
    }
}
int find(int v) {
    int now = root;
    while(now) {
        if(val[now] == v) {splay(now, root); return now;}
        int nxt = v > val[now];
        now = ch[now][nxt];
    }
}
void erase(int v) {
    int now = find(v);
    if(rev[now] > 1) {rev[now]--; siz[now]--; return ;}
    else if(!ls(now) && !rs(now)) {root = 0; return ;}
    else if(!ls(now)) {root = rs(now); fa[rs(now)] = 0;}
    else {
        int l = ls(now);
        while(rs(l)) l = rs(l);
        splay(l, ls(now));
        //ch[l][1] = rs(now); fa[rs(now)] = l;
        connect(rs(now), l, 1);
        connect(l, 0, 1);
        update(l);
    }
}
int rak(int v) {
    int pos = find(v);
    return siz[ch[pos][0]] + 1;
}
int kth(int v) {
    int now = root;
    while(now) {
        int used = siz[now] - siz[rs(now)];
        if(v <= used && v > siz[ls(now)]) return val[now];
        if(v > used) now = ch[now][1], v -= used;
        else now = ch[now][0];
    }
}
int pre(int v) {
    int ans = -INF, now = root;
    while(now) {
        if(val[now] < v) ans = max(ans, val[now]);
        int nxt = v <= val[now] ? 0 : 1;
        now = ch[now][nxt];
    }
    return ans;
}
int nxt(int v) {
    int ans = INF, now = root;
    while(now) {
        if(val[now] > v) ans = min(ans, val[now]);
        int nxt = v < val[now] ? 0 : 1;
        now = ch[now][nxt];
    }    
    return ans;
}
int main() {
    T = read();
    while(T--) {
        int opt = read(), x = read();
        if(opt == 1) insert(x);
        else if(opt == 2) erase(x);
        else if(opt == 3) printf("%d\n", rak(x));
        else if(opt == 4) printf("%d\n", kth(x));
        else if(opt == 5) printf("%d\n", pre(x));
        else if(opt == 6) printf("%d\n", nxt(x));    
    }
    return 0;
}
splay

 

Treap

#include<iostream>
#include<cstdio>
#include<cstdlib>
#define ls tree[k].l
#define rs tree[k].r
using namespace std;
const int MAXN=1e6+10;
inline char nc()
{
    static char buf[MAXN],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin))?EOF:*p1++;
}
inline int read()
{
    char c=nc();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=nc();}
    while(c>='0'&&c<='9'){x=x*10+c-'0',c=nc();}
    return x*f;
}
struct node
{
    int l,r,tot,recy,val,rd;
}tree[MAXN];
int size,root,ans=0;
inline void update(int k)
{
   tree[k].tot=tree[ls].tot+tree[rs].tot+tree[k].recy;
}
inline void insert(int &k,int x)
{
    if(k==0)
    {
        ++size;k=size;
        tree[size].recy=tree[size].tot=1;
        tree[size].val=x;tree[size].rd=rand();return ;
    }
    tree[k].tot++;
    if(tree[k].val==x)    tree[k].recy++;
    else if(x < tree[k].val)    insert( ls, x);
    else insert( rs , x );
}
inline void LeftRotate(int &k)
{
    int R=tree[k].r;
    tree[k].r=tree[R].l;
    tree[R].l=k;
    tree[R].tot=tree[k].tot;
    update(k);k=R;
}
inline void RightRotate(int &k)
{
    int R=tree[k].l;
    tree[k].l=tree[R].r;
    tree[R].r=k;
    tree[R].tot=tree[k].tot;
    update(k);k=R;
}
inline void del(int &k,int x)
{
    if(!k)    return ;
    if(tree[k].val==x)
    {
        if(tree[k].recy>1)    {tree[k].recy-=1,tree[k].tot-=1;return; }
        if(tree[k].l*tree[k].r==0)    k=tree[k].l+tree[k].r;
        else if(tree[ls].rd<tree[rs].rd)    RightRotate(k),del(k,x);
        else LeftRotate(k),del(k,x);
    }
    else if(x>tree[k].val)    tree[k].tot--,del(rs,x);
    else tree[k].tot--,del(ls,x);
}
int atrank(int &k,int x)
{
    if(k==0)    return 0;
    if(tree[k].val==x)    return tree[ls].tot+1;
    if(tree[k].val<x)    return atrank(rs,x)+tree[ls].tot+tree[k].recy;
    else return atrank(ls,x);
}
int rerand(int k,int x)
{
    if(k==0)    return 0;
    if(x<=tree[ls].tot)    return rerand(ls,x);
    else if(x>tree[ls].tot+tree[k].recy)    return rerand(rs,x-tree[ls].tot-tree[k].recy);
    else return tree[k].val;
}
void pred(int k,int x)
{
    if(k==0) return ;
    if(tree[k].val<x)    ans=k,pred(rs,x);
    else pred(ls,x);
}
void succ(int &k,int x)
{
    if(k==0) return ;
    if(tree[k].val>x)    ans=k,succ(ls,x);
    else succ(rs,x);
}
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    int n=read();
    while(n--)
    {
        int opt=read(),x=read();ans=0;
        if(opt==1)  insert(root,x);
        if(opt==2)  del(root,x);
        if(opt==3)  printf("%d\n",atrank(root,x));
        if(opt==4)  printf("%d\n",rerand(root,x));
        if(opt==5)  {pred(root,x);printf("%d\n",tree[ans].val);}
        if(opt==6)  {succ(root,x);printf("%d\n",tree[ans].val);}
    }
}
Treap

FHQ Treap

#include<iostream>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cstdlib>
using namespace std;
#define ls T[now].ch[0]
#define rs T[now].ch[1]
const int MAXN=1e6+10;
inline char nc()
{
    static char buf[MAXN],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
    char c=nc();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=nc();}
    while(c>='0'&&c<='9'){x=x*10+c-'0',c=nc();}
    return x*f;
}
struct node
{
    int ch[2],val,siz,pri;
}T[MAXN];
int tot=0;
int x,y,z,root=0;
int newnode(int v)
{
    T[++tot].siz=1;
    T[tot].val=v;
    T[tot].pri=rand();
    return tot;
}
void update(int now)
{
    T[now].siz=T[ls].siz+T[rs].siz+1;
}
void split(int now,int k,int &x,int &y)
{
    if(!now)  {x=y=0;return ;} 
    if(T[now].val<=k)  x=now,split(rs,k,rs,y);
    else y=now,split(ls,k,x,ls);
    update(now);
}
int merge(int x,int y)
{
    if(!x||!y)    return x+y;
    if(T[x].pri<T[y].pri)
    {
        T[x].ch[1]=merge(T[x].ch[1],y);
        update(x);
        return x;
    }
    else 
    {
        T[y].ch[0]=merge(x,T[y].ch[0]);
        update(y);
        return y;
    }
}
int kth(int now,int x)
{
    while(1)
    {
        if(T[ls].siz>=x)     now=ls;
        else
            if(T[ls].siz+1==x)    return now;
            else     x-=T[ls].siz+1,now=rs;
    }
}
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    srand((unsigned)time(NULL));
    int n=read();
    while(n--)
    {
        int opt=read(),val=read();
        if(opt==1)
        {
            split(root,val,x,y);
            root=merge( merge(x,newnode(val)),y );
        }
        else if(opt==2)
        {
            split(root,val,x,z);
            split(x,val-1,x,y);
            y=merge(T[y].ch[0],T[y].ch[1]);
            root=merge( merge(x,y) ,z);
        }
        else if(opt==3)
        {
            split(root,val-1,x,y);
            printf("%d\n",T[x].siz+1);
            root=merge(x,y);
        }
        else if(opt==4)
        {
            printf("%d\n",T[kth(root,val)].val);
        }
        else if(opt==5)
        {
            split(root,val-1,x,y);
            printf("%d\n",T[kth(x,T[x].siz)].val);
            root=merge(x,y);
        }
        else if(opt==6)
        {
            split(root,val,x,y);
            printf("%d\n",T[kth(y,1)].val);
            root=merge(x,y);
        }
    }
    return 0;
}

FHQ Treap
FHQ Treap

Trie树

01 Trie

http://www.cnblogs.com/zwfymqz/p/8440398.html

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN=1e6+10;
inline int read()
{
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
#define debug(x) printf("%d",x);
struct node
{
    int val,ch[2];
    node(){val=ch[0]=ch[1]=0;}
    void clear(){val=ch[0]=ch[1]=0;}
}T[MAXN];
int a[MAXN],root=0,tot=0;
void Insert(int v)
{
    int now=root;
    for(int i=31;i>=0;i--)
    {
        int opt=(v&(1<<i))?1:0;
        if(!T[now].ch[opt]) 
            T[now].ch[opt]=++tot;
        now=T[now].ch[opt];
        T[now].val++;
     }
}
void Delet(int v)
{
    int now=root;
    for(int i=31;i>=0;i--)
    {
        int opt=(v&(1<<i))?1:0;
        now=T[now].ch[opt];
        T[now].val--;
     }
}
int Query(int v)
{
    int ans=0,now=root;
    for(int i=31;i>=0;i--)
    {
        int opt=(v&(1<<i))?1:0;
        if(T[T[now].ch[opt^1]].val) 
            ans+=1<<i,now=T[now].ch[opt^1];
        else 
            now=T[now].ch[opt];
    }
    return ans;
}
int main()
{
    freopen("a.in","r",stdin);
    int Test=read();
    while(Test--)
    {
        int N=read();
        for(int i=1;i<=N;i++) a[i]=read();
        for(int i=1;i<=4*N;i++) 
            T[i].clear();
        for(int i=1;i<=N;i++) 
            Insert(a[i]);
        int ans=0;
        for(int i=1;i<=N;i++)
        {
            for(int j=1;j<i;j++)
            {
                Delet(a[i]);Delet(a[j]);
                ans=max(ans,Query(a[i]+a[j]));
                Insert(a[i]);Insert(a[j]);
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}
01 Trie

 

杂类算法

树上倍增

https://www.luogu.org/problem/show?pid=3379

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 using namespace std;
 6 const int MAXN=1000001;
 7 inline void read(int &n)
 8 {
 9     char c=getchar();bool flag=0;n=0;
10     while(c<'0'||c>'9')    c=='-'?flag=1,c=getchar():c=getchar();
11     while(c>='0'&&c<='9')    n=n*10+c-48,c=getchar();flag==1?n=-n:n=n;
12 }
13 struct node
14 {
15     int u,v,nxt;
16 }edge[MAXN];
17 int head[MAXN];
18 int num=1;
19 inline void add_edge(int x,int y)
20 {
21     edge[num].u=x;
22     edge[num].v=y;
23     edge[num].nxt=head[x];
24     head[x]=num++;
25 }
26 int deep[MAXN];
27 int f[MAXN][21];
28 int n,m,root;
29 int dfs(int now)
30 {
31     for(int i=head[now];i!=-1;i=edge[i].nxt)
32         if(deep[edge[i].v]==0)
33             deep[edge[i].v]=deep[now]+1,f[edge[i].v][0]=now,dfs(edge[i].v);
34 }
35 int pre()
36 {
37     for(int i=1;i<=19;i++)
38         for(int j=1;j<=n;j++)
39             f[j][i]=f[f[j][i-1]][i-1];
40 }
41 int LCA(int x,int y)
42 {
43     if(deep[x]<deep[y])    swap(x,y);
44     for(int i=19;i>=0;i--)
45         if(deep[f[x][i]]>=deep[y])
46             x=f[x][i];
47     if(x==y)    return x;
48     for(int i=19;i>=0;i--)
49         if(f[x][i]!=f[y][i])    
50             x=f[x][i],y=f[y][i];
51     return f[x][0];
52 }
53 int main()
54 {
55     memset(head,-1,sizeof(head));
56     read(n);read(m);read(root);
57     for(int i=1;i<=n-1;i++)
58     {
59         int x,y;
60         read(x);read(y);add_edge(x,y);add_edge(y,x);
61     }
62     deep[root]=1;
63     dfs(root);
64     pre();
65     for(int i=1;i<=m;i++)
66     {
67         int x,y;
68         read(x);read(y);
69         printf("%d\n",LCA(x,y));
70     }
71     return 0;
72 }
树上倍增

ST表

https://www.luogu.org/problem/show?pid=3865

// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#define max(a,b) (a<b?b:a)
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<19,stdin),p1==p2)?EOF:*p1++)
char buf[1<<19],*p1=buf,*p2=buf;
const int MAXN=1e5+10;
inline int read()
{
    char c=getchar();register int x=0;
    while(c<'0'||c>'9')c=getchar();
    while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
    return x;
}
char obuf[1<<24],*O=obuf;
void print(int x)
{
    if(x>9) print(x/10);
    *O++=x%10+'0';
}
int N,M; 
int f[MAXN][22];
int log2[MAXN];
int Query(int l,int r)
{
    int k=log2[r-l+1];
    return max(f[l][k],f[r-(1<<k)+1][k]);
}
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #endif
    N=read();M=read();
    for(int i=1;i<=N;i++) f[i][0]=read();
    for(int i=2;i<=N;i++) log2[i]=log2[i>>1]+1;
    for(register int j=1;j<=17;j++)
        for(register int i=1;i<=N&&i+(1<<j)-1<=N;i++)
            f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
    while(M--)
    {
        int l=read(),r=read();
        print(Query(l,r));
        *O++='\n';
    }
    fwrite(obuf,O-obuf,1,stdout);
    return 0;
}
ST表

点分治

给定一棵有n个点的树

询问树上距离为k的点对是否存在

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=1e6+10;
const int INF=1e7+10;
inline char nc()
{
    static char buf[MAXN],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
    char c=nc();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=nc();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=nc();}
    return x*f;
}
struct node
{
    int u,v,w,nxt;
}edge[MAXN];
int head[MAXN];
int num=1;
inline void AddEdge(int x,int y,int z)
{
    edge[num].u=x;
    edge[num].v=y;
    edge[num].w=z;
    edge[num].nxt=head[x];
    head[x]=num++;
}
int F[MAXN],sum,siz[MAXN],vis[MAXN],root=0,cnt=0,deep[MAXN],can[MAXN];
struct Ans
{
    int v,id;
}tot[MAXN];
void GetRoot(int now,int fa)
{
    siz[now]=1;
    for(int i=head[now];i!=-1;i=edge[i].nxt)
    {
        if(vis[edge[i].v]||edge[i].v==fa) continue;
        GetRoot(edge[i].v,now);
        siz[now]+=siz[edge[i].v];
        F[now]=max(F[now],siz[edge[i].v]);
    }
    F[now]=max(F[now],sum-F[now]);
    if(F[now]<F[root]) root=now;
}
void GetDeep(int now,int fa,int NowDeep,int num)
{
    int cur=0;
    tot[++cnt].v=deep[now];
    tot[cnt].id=num;
    for(int i=head[now];i!=-1;i=edge[i].nxt)
    {
        if(vis[edge[i].v]||edge[i].v==fa) continue;
        deep[edge[i].v]=deep[now]+edge[i].w;
        if(NowDeep!=1) GetDeep(edge[i].v,now,NowDeep+1,num);
        else GetDeep(edge[i].v,now,NowDeep+1,cur++);
    }
}
void Work(int now)
{
    cnt=0;deep[now]=0;
    GetDeep(now,0,1,1);
    for(int i=1;i<=cnt;i++)
        for(int j=i+1;j<=cnt;j++)
            if(tot[i].id!=tot[j].id) 
                 can[tot[i].v+tot[j].v]=1;
            else can[tot[i].v]=1,can[tot[j].v]=1;
}
void Solve(int now)
{
    Work(now);
    vis[now]=1;
    for(int i=head[now];i!=-1;i=edge[i].nxt)
    {
        if(vis[edge[i].v]) continue;
        root=0;
        sum=siz[edge[i].v];
        GetRoot(edge[i].v,0);
        Solve(edge[i].v);
    }
}
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif 
    memset(head,-1,sizeof(head));
    int N=read(),M=read();
    for(int i=1;i<=N-1;i++)
    {
        int x=read(),y=read(),z=read();
        AddEdge(x,y,z);
        AddEdge(y,x,z);
    }
    root=0;
    F[0]=INF;
    sum=N;
    GetRoot(1,0);
    Solve(root);
    for(int i=1;i<=M;i++)
    {
        int p=read();
        if(can[p]) printf("AYE\n");
        else        printf("NAY\n");
    }
    return 0;
}
View Code

主席树

// luogu-judger-enable-o2
// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[1<<21],*p1=buf,*p2=buf;
using namespace std;
const int MAXN=4*1e6+10;
inline int read()
{
    char c=getchar();register int x=0;
    while(c<'0'||c>'9')c=getchar();
    while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
    return x;
}
char obuf[1<<24],*O=obuf;
void print(int x)
{
    if(x>9) print(x/10);
    *O++=x%10+'0';
}
int N,M;
int a[MAXN],date[MAXN];
#define ls(x) T[x].ls
#define rs(x) T[x].rs
struct node
{
    int siz,ls,rs;
}T[MAXN];
int root[MAXN],tot=0;
void Insert(int pre,int &now,int l,int r,int pos)
{
    if(!now) now=++tot;
    T[now].siz=T[pre].siz+1;
    if(l==r) return ;
    int mid=(l+r)>>1;
    if(pos<=mid) T[now].rs=T[pre].rs,Insert(T[pre].ls,T[now].ls,l,mid,pos);
    else          T[now].ls=T[pre].ls,Insert(T[pre].rs,T[now].rs,mid+1,r,pos); 
}
int Query(int pre,int now,int l,int r,int k)
{
    if(l==r) return l;
    int left=T[ls(now)].siz-T[ls(pre)].siz;
    int mid=(l+r)>>1;
    if(k>left) return Query(T[pre].rs,T[now].rs,mid+1,r,k-left);
    else        return Query(T[pre].ls,T[now].ls,l,mid,k);
}
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #endif
    N=read();M=read();
    for(int i=1;i<=N;i++) date[i]=a[i]=read();
    sort(date+1,date+N+1);
    int num=unique(date+1,date+N+1)-date-1;
    for(int i=1;i<=N;i++)
        a[i]=lower_bound(date+1,date+num+1,a[i])-date;
    for(int i=1;i<=N;i++)
        Insert(root[i-1],root[i],1,num,a[i]);
    for(int i=1;i<=M;i++)
    {
        int l=read(),r=read(),k=read();
        print(date[Query(root[l-1],root[r],1,num,k)]);
        *O++='\n';
    }
    fwrite(obuf,O-obuf,1,stdout);
    return 0;
}
View Code

排序

归并排序

 1 #include<cstdio>
 2 #include<iostream>
 3 #include<cmath>
 4 using namespace std;
 5 const int MAXN=100001;
 6 inline int read()
 7 {
 8     char c=getchar();int x=0,flag=1;
 9     while(c<'0'||c>'9')    {if(c=='-')    flag=-1;c=getchar();}
10     while(c>='0'&&c<='9')    x=x*10+c-48,c=getchar();return x*flag;
11 }
12 int n;
13 int a[MAXN];
14 int tmp[MAXN];
15 void Sort(int l,int r)
16 {
17     if(l==r)    return ;
18     int mid=l+r>>1;
19     Sort(l,mid);Sort(mid+1,r);
20     int nowl=l,nowr=mid+1,nowpos=l;
21     while(nowl<=mid&&nowr<=r)
22     {
23         if(a[nowl]<=a[nowr])    tmp[nowpos++]=a[nowl],nowl++;
24         else tmp[nowpos++]=a[nowr],nowr++;
25     }
26     while(nowl<=mid)    tmp[nowpos++]=a[nowl],nowl++;
27     while(nowr<=r)        tmp[nowpos++]=a[nowr],nowr++;
28     for(int i=l;i<=r;i++)    a[i]=tmp[i];
29 }
30 int main()
31 {
32     n=read();
33     for(int i=1;i<=n;i++)    a[i]=read();
34     Sort(1,n);
35     for(int i=1;i<=n;i++)    printf("%d ",a[i]);
36     return 0;
37 }
归并排序

 

高精度

高精加

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<stdlib.h>
 6 #include<ctime>
 7 using namespace std;
 8 const int MAXN=100001;
 9 inline int read()
10 {
11     char c=getchar();int f=1,x=0;
12     while(c<'0'||c>'9')    {if(c=='-')    f=-1;c=getchar();}
13     while(c>='0'&&c<='9')    x=x*10+c-48,c=getchar();return x*f;
14 }
15 char a[MAXN],b[MAXN],c[MAXN];
16 int la,lb,x=0;
17 int main()
18 {
19     scanf("%s%s",a+1,b+1);
20     la=strlen(a+1);lb=strlen(b+1);
21     for(int i=1;i<=max(la,lb);i++)    
22         c[i]+=(a[i]+b[i]+x)%10,x=(a[i]+b[i]+x)/10;
23     c[max(la,lb)+1]=x;
24     bool flag=0;
25     for(int i=max(la,lb)+1;i>=1;i--)
26         if(c[i]!=0)
27         {
28             for(int j=i;j>=1;j--)        printf("%d",c[j]);
29             return 0;
30         }
31     printf("0");
32     return 0;
33 }
高精加法

 

数论

Lucas定理

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<map>
#define int long long  
using namespace std;
const int MAXN = 4 * 1e5 + 10, mod =  100003;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int T, N, M, P;
int fac[MAXN] = {1};
int fastpow(int a, int p, int mod) {
    int base = 1;
    while(p) {
        if(p & 1) base = (base % mod * a % mod) % mod;
        a = (a % mod * a % mod) % mod; p >>= 1;
    }
    return base % mod;
}
int inv(int a, int p) {
    return fastpow(a, p - 2, p);
}
int C(int N, int M, int P) {
    if(M > N) return 0;
    return fac[N] % P * inv(fac[M] * fac[N - M], P);
}
int Lucas(int N, int M, int P) {
    if(!N || !M) return 1;
    return Lucas(N / P, M / P, P) * C(N % P, M % P, P);    
}
main() {
    //freopen("a.in", "r", stdin);
    T = read(); 
    while(T--) {
        int N = read(), M = read(), P = read(); N = N + M;
        for(int i = 1; i <= 2 * 1e5; i++) fac[i] = (i * fac[i - 1]) % P;
        printf("%lld\n", Lucas(N, M, P) % P);
    }
}
Lucas定理

高斯消元

https://www.luogu.org/problemnew/show/P3389

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#define swap(x, y) x ^= y, y ^= x, x ^= y
const int MAXN= 102;
double A[MAXN][MAXN];
double Ans[MAXN];
int N;
void Guess() {
    for(int i = 1; i <= N; i++) {
        int mx = i;
        for(int j = i + 1; j <= N; j++)
            if(A[j][i] > A[mx][i]) swap(mx, j);
        if(A[i][i] == 0) {printf("No Solution\n");return ;}
        for(int j = i + 1; j <= N; j++) {
            double tmp = A[j][i] / A[i][i];
            for(int k = i + 1;  k <= N + 1; k++)
                A[j][k] -= tmp * A[i][k];
        }
    }
    for(int i = N; i >= 1; i--) {
        Ans[i] = A[i][N + 1] / A[i][i];
        for(int j = i; j >= 1; j--)
            A[j][N + 1] -= A[j][i] * Ans[i];
    }
    for(int i = 1; i <= N; i++)
        printf("%.2lf\n", Ans[i]);
}
int main()
{
    #ifdef WIN32
    freopen("a.in", "r", stdin);
    #endif
    scanf("%d", &N);
    for(int i = 1; i <= N; i++) 
        for(int j = 1; j <= N + 1; j++) 
            scanf("%lf", &A[i][j]);
    Guess();
    return 0;
}
高斯消元

 

莫比乌斯反演

FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define int long long 
using namespace std;
const int MAXN=1e6+10;
inline int read()
{
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int N;
int vis[MAXN],prime[MAXN],mu[MAXN],tot=0;
void GetMu()
{
    vis[1]=1;mu[1]=1;
    for(int i=1;i<=N;i++)
    {
        if(!vis[i]) prime[++tot]=i,mu[i]=-1;
        for(int j=1;j<=tot&&i*prime[j]<=N;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0) {mu[i*prime[j]]=0;break;}
            else mu[i*prime[j]]=-mu[i];
        }
    }
    for(int i=1;i<=N;i++) mu[i]+=mu[i-1];
}
main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    N=1e6;
    GetMu();
    int QWQ=read();
    while(QWQ--)
    {
        int n=read(),m=read(),k=read(),ans=0;
        int limit=min(n/k,m/k);
        int nxt=0;
        for(int i=1;i<=limit;i=nxt+1)
            nxt=min(n/(n/i),m/(m/i)),
            ans+=(mu[nxt]-mu[i-1])*((n/k)/i)*((m/k)/i);
        printf("%lld\n",ans);
    }
    return 0;
} 
反演

 

线性基

//http://acm.hdu.edu.cn/showproblem.php?pid=3949
#include<bits/stdc++.h>
#define LL long long 
using namespace std;
const int MAXN = 67, B = 51;
inline LL read() {
    char c = getchar(); LL x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M;
struct LinearBasis {
#define LL long long 
    LL P[63]; int B;
    LinearBasis() {
        B = 62; memset(P, 0, sizeof(P));
    }
    void clear() {
        memset(P, 0, sizeof(P));
    }
    void insert(LL val) {
        for(int i = B; i >= 0; i--) {
            if(!(val >> i & 1)) continue;
            if(P[i]) {val ^= P[i]; continue;}    
            for(int j = 0; j < i; j++) if(val >> j & 1) val ^= P[j];
            for(int j = i + 1; j <= B; j++) if(P[j] >> i & 1) P[j] ^= val;
            P[i] = val;
            return ;
        }
    }
    LL QueryMax() {
        LL ans = 0;
        for(int i = 0; i <= B; i++) ans ^= P[i];
        return ans;
    }
    LL QueryKth(LL k) {
        std::vector<int> v;
        for(int i = 0; i <= B; i++) if(P[i]) v.push_back(P[i]);
        if(v.size() != N) k--;
        if(k > ((1ll << v.size()) - 1)) return -1;
        LL ans = 0;
        for(int i = 0; i < v.size(); i++) if(k >> i & 1) ans ^= v[i];
        return ans;
    }
#undef LL 
}Ba;
void solve() {
    N = read();
    for(int i = 1; i <= N; i++) Ba.insert(read());
    M = read();
    while(M--) cout << Ba.QueryKth(read()) << endl;
}
signed main() {
    int T = read();
    for(int i = 1; i <= T; i++) Ba.clear(), printf("Case #%d:\n", i), solve();
    return 0;
}
线性基

 

多项式

FFT

// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#include<cmath>
#define Pi acos(-1)
using namespace std;
const int MAXN = 4 * 1e6 + 10;
inline int read() { 
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M, limit = 1, L;
struct complex {
    double x, y;
    complex(double xx = 0, double yy = 0) {x = xx, y = yy;}
    complex operator + (const complex &rhs) {
        return complex(x + rhs.x, y + rhs.y);
    }
    complex operator - (const complex &rhs) {
        return complex(x - rhs.x, y - rhs.y);
    }
    complex operator * (const complex &rhs) {
        return complex(x * rhs.x - y * rhs.y, x * rhs.y + y * rhs.x);
    }
}a[MAXN], b[MAXN];
int r[MAXN];
void FFT(complex *A, int type) {
    for(int i = 0; i < limit; i++) 
        if(i < r[i]) swap(A[i], A[r[i]]);
    for(int mid = 1; mid < limit; mid <<= 1) {
        complex Wn = complex(cos(Pi / mid), type * sin(Pi / mid));
        for(int R = mid << 1, j = 0; j < limit; j += R) {
            complex w = complex(1, 0);
            for(int k = 0; k < mid; k++, w = w * Wn) {
                 complex x = A[j + k], y = w * A[j + k +mid];
                 A[j + k] = x + y,
                 A[j + k + mid] = x - y;
            }
        }
    }
}
int main() {
    #ifdef WIN32
    freopen("a.in", "r", stdin);
    #endif
    N = read(); M = read();
    for(int i = 0; i <= N; i++) 
        a[i].x = read();
    for(int i = 0; i <= M; i++)
        b[i].x = read();
    while(limit <= N + M) 
        limit <<= 1, L++;
    for(int i = 0; i <= limit; i++)
        r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));    
    FFT(a, 1);FFT(b, 1);
    for(int i = 0; i < limit; i++) a[i] = a[i] * b[i];

    FFT(a, -1);    
    for(int i = 0; i <= N + M; i++)
        printf("%d ", (int)(a[i].x / limit + 0.5));
    return 0;
}
FFT

NTT

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<algorithm>
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<21, stdin), p1 == p2) ? EOF : *p1++)
#define swap(x,y) (x ^= y, y ^= x, x ^= y)
#define mul(a, b) 1ll * a * b % P
#define add(a, b) (a + b >= P ? a + b - P : a + b)
#define dec(a, b) (a - b <  0 ? a - b + P : a - b)
#define rg register 
using namespace std;
const int MAXN = 4 * 1e6, P = 998244353, Gi = 3; 
char buf[1<<21], *p1 = buf, *p2 = buf;
inline int read() { 
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
char obuf[1<<24], *O=obuf;
void print(int x) {
    if(x > 9) print(x / 10);
    *O++= x % 10 + '0';
}
inline int fastpow(int a, int k) {
    int  base = 1;
    while(k) {
        if(k & 1) base = mul(a, base);
        a = mul(a, a); k >>= 1;
    }
    return base % P;
}
int N, r[MAXN], A[MAXN], B[MAXN], Og[MAXN], F[MAXN], Q[MAXN], G[MAXN], R[MAXN];
inline void NTT(int  *A, int type, int len) {
    int limit = 1, L = 0;
    while(limit < len) limit <<= 1, L++;
    for(rg int i = 0; i < limit; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (L - 1));    
    for(rg int i = 0; i < limit; i++) if(i < r[i]) swap(A[i], A[r[i]]);
    for(rg int mid = 1; mid < limit; mid <<= 1) {    
        int  R = mid << 1;
        int  W = fastpow(Gi, (P - 1) / R); Og[0] = 1;
        for(rg int j = 1; j < mid; j++) Og[j] = mul(Og[j - 1], W);
        for(rg int j = 0; j < limit; j += R) {
            for(rg int k = 0; k < mid; k++) {
                 const int x = A[j + k], y = mul(Og[k], A[j + k + mid]);
                 A[j + k] = add(x, y), A[j + k + mid] = dec(x, y);
            }
        }
    }
    if(type == -1) {
        std::reverse(&A[1], &A[limit]);
        for(int i = 0, inv = fastpow(len , P - 2); i < limit; i++)
            A[i] = 1ll * A[i] * inv % P;
    }
}
void Inv(int *a, int *b, int len) {// a要求的多项式 b逆元 len:要求的逆元的长度 
    if(len == 1) {
        b[0] = fastpow(a[0], P - 2);
        return ;
    }
    Inv(a, b, len >> 1);
    for(rg int i = 0; i < len; i++) A[i] = a[i], B[i] = b[i];
    NTT(A, 1, len << 1); NTT(B, 1, len << 1);
    for(rg int i = 0; i < (len << 1); i++) A[i] = mul(mul(A[i], B[i]), B[i]) ;
    NTT(A, -1, len << 1);
    for(rg int i = 0; i < len; i++) b[i] = (1ll * (b[i] << 1) % P + P - A[i] ) % P;
}
void Mul(int *a, int *b, int *c, int N) {
    int len;
    for(len = 1; len < N; len <<= 1);
    NTT(a, 1, len); NTT(b, 1, len);
    for(int i = 0; i < len; i++) c[i] = 1ll * a[i] * b[i] % P;
    NTT(c, -1, len);
}
int main() {
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #endif 
       int N = read(), M = read();
       for(int i = 0; i <= N; i++) F[i] = read();
       for(int i = 0; i <= M; i++) G[i] = read();
       /*reverse(F, F + N + 1); reverse(G, G + M + 1);*/
       Mul(F, G, R, N + M + 1);
       for(int i = 0; i <= N + M; i++) print(R[i]), *O++ = ' ';
    fwrite(obuf, O-obuf, 1 , stdout);
    return 0;
}
NTT

 

posted @ 2017-10-18 19:21  自为风月马前卒  阅读(760)  评论(14编辑  收藏  举报

Contact with me