P1338 末日的传说

题目描述

只要是参加jsoi活动的同学一定都听说过Hanoi塔的传说:三根柱子上的金片每天被移动一次,当所有的金片都被移完之后,世界末日也就随之降临了。

在古老东方的幻想乡,人们都采用一种奇特的方式记录日期:他们用一些特殊的符号来表示从1开始的连续整数,1表示最小而N表示最大。创世纪的第一天,日历就被赋予了生命,它自动地开始计数,就像排列不断地增加。

我们用1-N来表示日历的元素,第一天日历就是

1, 2, 3, … N

第二天,日历自动变为

1, 2, 3, … N, N-1

……每次它都生成一个以前未出现过的“最小”的排列——把它转为N+1进制后数的数值最小。

日子一天一天地过着。有一天,一位预言者出现了——他预言道,当这个日历到达某个上帝安排的时刻,这个世界就会崩溃……他还预言到,假如某一个日期的逆序达到一个值M的时候,世界末日就要降临。

什么是逆序?日历中的两个不同符号,假如排在前面的那个比排在后面的那个更大,就是一个逆序,一个日期的逆序总数达到M后,末日就要降临,人们都期待一个贤者,能够预见那一天,到底将在什么时候到来?

输入输出格式

输入格式:

 

只包含一行两个正整数,分别为N和M。

 

输出格式:

 

输出一行,为世界末日的日期,每个数字之间用一个空格隔开。

 

输入输出样例

输入样例#1:
5 4
输出样例#1:
1 3 5 4 2

说明

对于10%的数据有N <= 10。

对于40%的数据有N <= 1000。

对于100%的数据有 N <= 50000。

所有数据均有解。

 

我们考虑把这个问题缩小范围。

比如n=5,在决定了最小的数“1”的位置之后,剩下的几个数是2 3 4 5,但是他们

具体是多少没必要关心,我们只要关心他们的相对大小关系。

所以考虑完当前最小的数,算出这个数对答案的贡献,然后减掉这个贡献,

就可以转而解决一个更小的子问题。(即n-->n-1)

回到题目上,要求是求一个有m个逆序对的字典序最小的排列。

我们知道一个长度为n的排列最多有(n-1)*n/2个逆序对,也知道一个排列的逆序对数越多,排列字典序越大。

所以如果当前m不比当前的(n-2)*(n-1)/2(也就是减少一个数之后的最多的逆序对数)大,

就可以直接把当前的最小数放在最前面,这肯定是最优的。

反之,则考虑最小数的放置位置。

假设当前排列长为n,最小数为a,则a有n种放法,放在从左到右第i个位置时会生成i-1个逆序对

(因为它左边有i-1个比他大)。

因为m大于n-1长度排列最多所能产生的逆序数,所以a不可能放在最前面,否则不满足条件。

怎么办呢?想到之前说的逆序对越多字典序越大,我们就必须让剩下的数能构成的逆序对数尽量小,所以a要放到最后,这样m减少的最多。

放完了a,问题就变成了n-1和m-(a的贡献)的子问题,递归求解即可。时间复杂度O(n)。

 

 

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lli long long int 
using namespace std;
const lli MAXN=50001;
inline void read(lli &n)
{
	char c='+';lli x=0;bool flag=0;
	while(c<'0'||c>'9')
	{c=getchar();if(c=='-')flag=1;}
	while(c>='0'&&c<='9')
	{x=(x<<1)+(x<<3)+c-48,c=getchar();}
	flag==1?n=-x:n=x;
}
lli a[MAXN];
lli ed,bg;
int main()
{
    lli n,m;
    read(n);read(m);
    ed=n;
    bg=1;
    for(lli i=1;i<=n;i++)
    {
    	lli num=(n-i)*(n-i-1)/2;
    	if(num>=m)
    		a[bg++]=i;
    	else a[ed--]=i,m-=(ed-bg+1);
	}
	for(lli i=1;i<=n;i++)
		printf("%lld ",a[i]);
    return 0;
}

  

posted @ 2017-07-12 21:17  自为风月马前卒  阅读(420)  评论(0编辑  收藏  举报

Contact with me