P1044 栈

题目背景

栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。

栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈)。

栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。

题目描述

宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n。

现在可以进行两种操作,

1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作)

  1. 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作)

使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由1 2 3生成序列2 3 1的过程。

(原始状态如上图所示)

你的程序将对给定的n,计算并输出由操作数序列1,2,…,n经过操作可能得到的输出序列的总数。

输入输出格式

输入格式:

输入文件只含一个整数n(1≤n≤18)

输出格式:

输出文件只有一行,即可能输出序列的总数目

输入输出样例

输入样例#1:
3
输出样例#1:
5


这题是个裸的卡特兰数
但是也可以用dp做,
用dp[i][j]表示i个在栈里,j个在栈外的方案数
转移方程:
dp[j][i]=max(dp[j][i],dp[j-1][i]+dp[j+1][i-1])
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 using namespace std;
 6 int read(int & n)
 7 {
 8     char p='+';int x=0;
 9     while(p<'0'||p>'9')
10         p=getchar();
11     while(p>='0'&&p<='9')
12     x=x*10+p-48,p=getchar();
13     n=x;
14 }
15 int dp[20][20];
16 int main()
17 {
18     int ans=0;
19     int n;read(n);
20     for(int i=0;i<=n;i++)
21     {
22         for(int j=0;j<=n;j++)
23         {
24             if(i==0)
25                 dp[j][0]=1;
26             else if(j==0)
27                 dp[0][i]=dp[1][i-1];
28             else
29                 dp[j][i]=max(dp[j][i],dp[j-1][i]+dp[j+1][i-1]);
30         }
31     }
32     cout<<dp[0][n];
33     return 0;
34 }

 

posted @ 2017-06-15 20:23  自为风月马前卒  阅读(303)  评论(0编辑  收藏  举报

Contact with me