BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

题意

题目链接

Sol

开始用反演推发现不会求\(\mu(k)\)慌的一批

退了两步发现只要求个欧拉函数就行了

\(ans = \sum_{d | n} d \phi(\frac{n}{d})\)

理论上来说复杂度是\(O(n)\)的,但是\(d\)的值十分有限。在\(2^{32}\)内最多的约数也只有1920个。

/*

*/
#include<bits/stdc++.h>
#define LL long long 
#define int long long 
const int MAXN = 1e5 + 10, INF = 1e9 + 7;
using namespace std;
inline int read() {
	char c = getchar(); int x = 0, f = 1;
	while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
	while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
	return x * f;
}
int N;
int calc(int N) {
	int res = 1;
	for(int i = 2; i * i <= N; i++) {
		if(N % i == 0) {
			int now = (i - 1); N /= i;
			while(N % i == 0) now *= i, N /= i;
			res *= now;
		}
	}
	if(N != 1) res *= (N - 1);
	return res;
}
signed main() {
	N = read();
	int ans = 0;
	for(int i = 1; i * i <= N; i++) {
		if(N % i == 0) {
			ans += i * calc(N / i);
			if(i != N / i) ans += (N / i) * calc(i);
		}
	}
	cout << ans;
	return 0;
}
/*
3 7
a*b
aebr*ob
*/
posted @ 2019-02-11 11:18  自为风月马前卒  阅读(298)  评论(0编辑  收藏  举报

Contact with me