ocr http 调用

orc环境自行搭建,本文主要介绍http连接OCR的方式

http方法

复制代码
        public static Stream parsePIC(string base64Date)
        {
            try
            {
                string ocr = "http://***:***/predict/ocr_system";
                HttpWebRequest req = (HttpWebRequest)WebRequest.Create(ocr);
                req.Method = "POST";
                req.ContentType = "application/json";
                string param = "{\"images\":[\"" + base64Date + "\"]}";
                byte[] data = Encoding.UTF8.GetBytes(param);
                req.ContentLength = data.Length;
                using (Stream reqstream = req.GetRequestStream())
                {
                    reqstream.Write(data, 0, data.Length);
                    reqstream.Close();
                }
                HttpWebResponse resp = (HttpWebResponse)req.GetResponse();
                Stream stream = resp.GetResponseStream();
                return stream;
            }
            catch (Exception ex)
            {
                throw ex;
            }
        }
复制代码

具体调用方式  首先要存在stream流文件

复制代码
                        Stream stream = HttpHelper.parsePIC(base64);
                        using (StreamReader reader = new StreamReader(stream, Encoding.UTF8))
                        {
                            text_region_xh = new List<List<int>>();
                            results = reader.ReadToEnd();
                            JObject jobject = JsonConvert.DeserializeObject<JObject>(results);
                            JArray jarray = (JArray)jobject.GetValue("results").First;
                            foreach (JObject item in jarray)
                            {
                                if (xh == item.GetValue("text").ToString())
                                   
                            }
                        }
复制代码

其中JObject需要引用依赖Newtonsoft.Json.Linq

posted @   zwbsoft  阅读(162)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
点击右上角即可分享
微信分享提示