过雁

--每天都被梦想唤醒--

   :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

数学定义[编辑]

k个随机变量Z_1、……、Z_k是相互独立,符合标准正态分布随机变量数学期望为0、方差为1),则随机变量Z的平方和

X=\sum_{i=1}^k Z_i^2

被称为服从自由度为 k 的卡方分布,记作

    X\ \sim\ \chi^2(k) \,
   \ X\ \sim\ \chi^2_k

Definition[edit]

If Z1, ..., Zk are independentstandard normal random variables, then the sum of their squares,


    Q\ = \sum_{i=1}^k Z_i^2 ,

is distributed according to the chi-squared distribution with k degrees of freedom. This is usually denoted as


    Q\ \sim\ \chi^2(k)\ \ \text{or}\ \ Q\ \sim\ \chi^2_k .

The chi-squared distribution has one parameter: k — a positive integer that specifies the number of degrees of freedom (i.e. the number of Zi’s)


 (应用原理没搞懂)
 




posted on 2015-02-01 17:00  过雁  阅读(866)  评论(0编辑  收藏  举报