无论是Hadoop还是spark,shuffle操作都是决定其性能的重要因素。在不能减少shuffle的情况下,使用一个好的shuffle管理器也是优化性能的重要手段。
ShuffleManager的主要功能是在task直接传递数据,所以getWriter和getReader是它的主要接口。
大流程:
1)需求方:当一个Stage依赖于一个shuffleMap的结果,那它在DAG分解的时候就能识别到这个依赖,并注册到shuffleManager;
2)供应方:也就是shuffleMap,它在结束后,会将自己的结果注册到shuffleManager,并通知说自己已经结束了。
3)这样,shuffleManager就将shuffle两段连接了起来。
spark提供了两个shuffle管理器:
1)HashShuffleManager: 提供了HashShuffleReader和HashShuffleWriter两个方法。数据的写入是按照k-v对的形式写入的,可以自定义排序和聚合。
* A ShuffleManager using hashing, that creates one output file per reduce partition on each
* mapper (possibly reusing these across waves of tasks).
2)SortShuffleManager: 数据按顺序写入。保存了一个blockId文件和blockId.index文件,用途不太清楚。
引用一个别人的图来说明这个关系:
shuffle的数据读取的函数为HashShuffleReader,它基本上直接调用了下面的流程:
这是一段写得极为紧密的代码,几乎每一行都带了大量的运算,看得特纠结。。
======================获取block数据的流程============================
->BlockStoreShuffleFetcher.fetch[T](shuffleId: Int,reduceId: Int,...) : Iterator[T] --获取shuffleId,ReduceId对应的数据块
->val blockManager = SparkEnv.get.blockManager --获取数据块管理器
->val statuses = SparkEnv.get.mapOutputTracker.getServerStatuses(shuffleId, reduceId)
//--获取shuffleId和reduceId对应的数据‘目录’,statuses是以ManagerId为key的hash表,value是数据的大小
-> val splitsByAddress = new HashMap[BlockManagerId, ArrayBuffer[(Int, Long)]] --创建解析数据‘目录’的缓冲
->for (((address, size), index) <- statuses.zipWithIndex) --遍历整个,并加了个索引。
->splitsByAddress.getOrElseUpdate(address, ArrayBuffer()) += ((index, size)) --将‘目录’以地址为索引重新组织
->val blocksByAddress: Seq[(BlockManagerId, Seq[(BlockId, Long)])] = splitsByAddress.toSeq.map { --‘目录’再次重新组织
//新的‘目录’格式为Seq[(BlockManagerId, Seq[(BlockId, Long(数据长度))])],因为需要BlockId获取数据
->case (address, splits) => (address, splits.map(s => (ShuffleBlockId(shuffleId, s._1, reduceId), s._2)))
->val blockFetcherItr = blockManager.getMultiple(blocksByAddress, serializer, shuffleMetrics) --获取多块block数据
-> new BlockFetcherIterator.NettyBlockFetcherIterator(this, blocksByAddress, serializer, readMetrics) --使用netty
->iter = BasicBlockFetcherIterator(blockManager, blocksByAddress, serializer, readMetrics) --获取blocks的迭代器
->BasicBlockFetcherIterator 初始化
->protected val localBlocksToFetch = new ArrayBuffer[BlockId]() --本地获取的blockId
->protected val remoteBlocksToFetch = new HashSet[BlockId]() --远程获取的blockId
->protected val results = new LinkedBlockingQueue[FetchResult] --获取的结果放在这里
->protected val fetchRequests = new Queue[FetchRequest] --需要发送出去的请求,主要是为了控制获取的速度
->iter.initialize() --初始化这个迭代器,它会启动获取数据
->val remoteRequests = splitLocalRemoteBlocks() --将传入的block请求转换按块划分的请求。控制并发度。
->val targetRequestSize = math.max(maxBytesInFlight / 5, 1L) --允许最多五个节点同时获取数据。
// Split local and remote blocks. Remote blocks are further split into FetchRequests of size
->val remoteRequests = new ArrayBuffer[FetchRequest] --请求块数组
->for ((address, blockInfos) <- blocksByAddress) { 遍历所有请求的blockId,以一个地址为单位
->if (address == blockManagerId) --本地获取
->localBlocksToFetch ++= blockInfos.filter(_._2 != 0).map(_._1) 本地允许所有同时获取,不控制并发
->else --远端机器
->val iterator = blockInfos.iterator --获得每个地址对应的blockId的迭代器
->while (iterator.hasNext) { --遍历一个地址的所有blockId
->val (blockId, size) = iterator.next()
->curBlocks += ((blockId, size)) --全部写到一个请求块里面
->if (curRequestSize >= targetRequestSize) --如果一个请求块获取的数据太大了
->remoteRequests += new FetchRequest(address, curBlocks) --那么新建一个请求块
->curBlocks = new ArrayBuffer[(BlockId, Long)] --创建新的请求块
->remoteRequests += new FetchRequest(address, curBlocks ) 将请求块封装到一个请求消息里面
->return remoteRequests 将所有的请求消息返回
->fetchRequests ++= Utils.randomize(remoteRequests) --// Add the remote requests into our queue in a random order随机打散
->while (!fetchRequests.isEmpty &&(bytesInFlight == 0 || bytesInFlight + fetchRequests.front.size <= maxBytesInFlight))
->sendRequest(fetchRequests.dequeue()) --发送请求数据的消息
->val cmId = new ConnectionManagerId(req.address.host, req.address.port)--连接一个地址的信息封装
->blockMessageArray = new BlockMessageArray(req.blocks.map { 遍历这个地址的所有的blockId
->case (blockId, size) => BlockMessage.fromGetBlock(GetBlock(blockId)) -- 将请求信息再封装一次!!
->future = connectionManager.sendMessageReliably(cmId, blockMessageArray.toBufferMessage) --异步执行
->future.onComplete { --future完成后回调
->case Success(message) => 成功获取数据
->val bufferMessage = message.asInstanceOf[BufferMessage] --获取到了数据块
->val blockMessageArray = BlockMessageArray.fromBufferMessage(bufferMessage) --格式转换
->for (blockMessage <- blockMessageArray) --遍历所有获取到的数据块,写到results中
->results.put(new FetchResult(blockId, sizeMap(blockId), () => dataDeserialize(...)))
->logDebug("Got remote block " + blockId + " after " + Utils.getUsedTimeMs(startTime))
->getLocalBlocks() --获取本地数据
->for (id <- localBlocksToFetch)
->val iter = getLocalFromDisk(id, serializer).get --从本地磁盘获取
->results.put(new FetchResult(id, 0, () => iter)) --写入results中
->val itr = blockFetcherItr.flatMap(unpackBlock) //处理可能有失败的block的情况
->val completionIter = CompletionIterator[T, Iterator[T]](itr, { context.taskMetrics.updateShuffleReadMetrics()})
->new InterruptibleIterator[T](context, completionIter) 将获取的结果以迭代器的形式返回给上层。
根据shuffleId、reduceId获取结果数据的状态的函数包含了一个缓存功能,稍微复杂,独立拉出来
->MapOutputTracker::getServerStatuses(shuffleId: Int, reduceId: Int): Array[(BlockManagerId, Long)]
->val statuses = mapStatuses.get(shuffleId).orNull
->if (statuses == null) --缓存没找到,到远端节点获取,在写入缓存
->if (fetching.contains(shuffleId))
->while (fetching.contains(shuffleId))
->fetching.wait()
->fetching += shuffleId
->val fetchedBytes = askTracker(GetMapOutputStatuses(shuffleId)).asInstanceOf[Array[Byte]]
->val future = trackerActor.ask(message)(timeout)
->Await.result(future, timeout)
->fetchedStatuses = MapOutputTracker.deserializeMapStatuses(fetchedBytes)
->mapStatuses.put(shuffleId, fetchedStatuses)
->fetching -= shuffleId
->fetching.notifyAll()
->result = MapOutputTracker.convertMapStatuses(shuffleId, reduceId, fetchedStatuses)
->statuses.map {status =>
->(status.location, decompressSize(status.compressedSizes(reduceId)))
->decompressSize(compressedSize: Byte) --注意这个数据长度的编码很有意思
->math.pow(LOG_BASE, compressedSize & 0xFF).toLong, --LOG_BASE=1.1
->return result
work接收到消息的处理函数
->BlockManagerWorker::onBlockMessageReceive(msg: Message, id: ConnectionManagerId): Option[Message] --接收消息
->case bufferMessage: BufferMessage => 接收到的是bufferMessage
->val responseMessages = blockMessages.map(processBlockMessage).filter(_ != None).map(_.get)
->processBlockMessage(blockMessage: BlockMessage): Option[BlockMessage] --处理blockMessage
->case BlockMessage.TYPE_PUT_BLOCK => --put消息
->val pB = PutBlock(blockMessage.getId, blockMessage.getData, blockMessage.getLevel)
->putBlock(pB.id, pB.data, pB.level) --调用写入函数
->blockManager.putBytes(id, bytes, level) --下面比较繁琐,以后再看
->doPut(blockId, ByteBufferValues(bytes), level, tellMaster, effectiveStorageLevel)
->case BlockMessage.TYPE_GET_BLOCK => { --get消息
->val gB = new GetBlock(blockMessage.getId)
->val buffer = getBlock(gB.id) --读取block
->val buffer = blockManager.getLocalBytes(id) --从本地磁盘读取block
->Some(BlockMessage.fromGotBlock(GotBlock(gB.id, buffer))) --返回给请求者的数据
=================================end====================================
shuffle接口类:
/**
* Pluggable interface for shuffle systems. A ShuffleManager is created in SparkEnv on both the
* driver and executors, based on the spark.shuffle.manager setting. The driver registers shuffles
* with it, and executors (or tasks running locally in the driver) can ask to read and write data.
*
* NOTE: this will be instantiated by SparkEnv so its constructor can take a SparkConf and
* boolean isDriver as parameters.
*/
private[spark] trait ShuffleManager {
/**
* Register a shuffle with the manager and obtain a handle for it to pass to tasks.
*/
def registerShuffle[K, V, C](
shuffleId: Int,
numMaps: Int,
dependency: ShuffleDependency[K, V, C]): ShuffleHandle
/** Get a writer for a given partition. Called on executors by map tasks. */
def getWriter[K, V](handle: ShuffleHandle, mapId: Int, context: TaskContext): ShuffleWriter[K, V]
/**
* Get a reader for a range of reduce partitions (startPartition to endPartition-1, inclusive).
* Called on executors by reduce tasks.
*/
def getReader[K, C](
handle: ShuffleHandle,
startPartition: Int,
endPartition: Int,
context: TaskContext): ShuffleReader[K, C]
/** Remove a shuffle's metadata from the ShuffleManager. */
def unregisterShuffle(shuffleId: Int)
/** Shut down this ShuffleManager. */
def stop(): Unit
}
/**
* :: DeveloperApi ::
* Represents a dependency on the output of a shuffle stage. Note that in the case of shuffle,
* the RDD is transient since we don't need it on the executor side.
*
* @param _rdd the parent RDD
* @param partitioner partitioner used to partition the shuffle output
* @param serializer [[org.apache.spark.serializer.Serializer Serializer]] to use. If set to None,
* the default serializer, as specified by `spark.serializer` config option, will
* be used.
*/
@DeveloperApi
class ShuffleDependency[K, V, C](
@transient _rdd: RDD[_ <: Product2[K, V]],
val partitioner: Partitioner,
val serializer: Option[Serializer] = None,
val keyOrdering: Option[Ordering[K]] = None,
val aggregator: Option[Aggregator[K, V, C]] = None,
val mapSideCombine: Boolean = false)
extends Dependency[Product2[K, V]] {
override def rdd = _rdd.asInstanceOf[RDD[Product2[K, V]]]
val shuffleId: Int = _rdd.context.newShuffleId()
val shuffleHandle: ShuffleHandle = _rdd.context.env.shuffleManager.registerShuffle(
shuffleId, _rdd.partitions.size, this)
_rdd.sparkContext.cleaner.foreach(_.registerShuffleForCleanup(this))
}
/**
* A basic ShuffleHandle implementation that just captures registerShuffle's parameters.
*/
private[spark] class BaseShuffleHandle[K, V, C](
shuffleId: Int,
val numMaps: Int,
val dependency: ShuffleDependency[K, V, C])
extends ShuffleHandle(shuffleId)
/**
* Class that keeps track of the location of the map output of
* a stage. This is abstract because different versions of MapOutputTracker
* (driver and worker) use different HashMap to store its metadata.
*/
private[spark] abstract class MapOutputTracker(conf: SparkConf) extends Logging {
一个shuffleTask的结果会以MapStatus的形式返回给调度器,包括map执行的机器的BlockManager的地址以及输出结果的大小。注意,这个size是经过压缩后的大小
/**
* Result returned by a ShuffleMapTask to a scheduler. Includes the block manager address that the
* task ran on as well as the sizes of outputs for each reducer, for passing on to the reduce tasks.
* The map output sizes are compressed using MapOutputTracker.compressSize.
*/
private[spark] class MapStatus(var location: BlockManagerId, var compressedSizes: Array[Byte])
extends Externalizable {
private[spark] class BlockMessage() {
// Un-initialized: typ = 0
// GetBlock: typ = 1
// GotBlock: typ = 2
// PutBlock: typ = 3
private var typ: Int = BlockMessage.TYPE_NON_INITIALIZED
private var id: BlockId = null
private var data: ByteBuffer = null
private var level: StorageLevel = null
hash和sort的shuffleManager的reader都是用了这个HashShuffleReader,BlockStoreShuffleFetcher.fetch做了大部分工作。
private[spark] class HashShuffleReader[K, C](
handle: BaseShuffleHandle[K, _, C],
startPartition: Int,
endPartition: Int,
context: TaskContext)
extends ShuffleReader[K, C]
{
require(endPartition == startPartition + 1,
"Hash shuffle currently only supports fetching one partition")
private val dep = handle.dependency
/** Read the combined key-values for this reduce task */
override def read(): Iterator[Product2[K, C]] = {
val readMetrics = context.taskMetrics.createShuffleReadMetricsForDependency()
val ser = Serializer.getSerializer(dep.serializer)
val iter = BlockStoreShuffleFetcher.fetch(handle.shuffleId, startPartition, context, ser,
readMetrics)
--下面这段是获取聚合器,它可以配置指定是map阶段聚合还是reduce阶段聚合。
val aggregatedIter: Iterator[Product2[K, C]] = if (dep.aggregator.isDefined) {
if (dep.mapSideCombine) {
new InterruptibleIterator(context, dep.aggregator.get.combineCombinersByKey(iter, context))
} else {
new InterruptibleIterator(context, dep.aggregator.get.combineValuesByKey(iter, context))
}
} else if (dep.aggregator.isEmpty && dep.mapSideCombine) {
throw new IllegalStateException("Aggregator is empty for map-side combine")
} else {
// Convert the Product2s to pairs since this is what downstream RDDs currently expect
iter.asInstanceOf[Iterator[Product2[K, C]]].map(pair => (pair._1, pair._2))
}
// Sort the output if there is a sort ordering defined.
dep.keyOrdering match {
case Some(keyOrd: Ordering[K]) => --是否有自定义的排序算法
// Create an ExternalSorter to sort the data. Note that if spark.shuffle.spill is disabled,
// the ExternalSorter won't spill to disk.
val sorter = new ExternalSorter[K, C, C](ordering = Some(keyOrd), serializer = Some(ser))
sorter.insertAll(aggregatedIter)
context.taskMetrics.memoryBytesSpilled += sorter.memoryBytesSpilled
context.taskMetrics.diskBytesSpilled += sorter.diskBytesSpilled
sorter.iterator
case None =>
aggregatedIter
}
}
/** Close this reader */
override def stop(): Unit = ???
}
HashShuffleWriter: 这个只是对父类的writer做了每次写入一个k-v的封装,比较简单
private[spark] class HashShuffleWriter[K, V](
handle: BaseShuffleHandle[K, V, _],
mapId: Int,
context: TaskContext)
extends ShuffleWriter[K, V] with Logging {
private val blockManager = SparkEnv.get.blockManager
private val shuffleBlockManager = blockManager.shuffleBlockManager
private val ser = Serializer.getSerializer(dep.serializer.getOrElse(null))
private val shuffle = shuffleBlockManager.forMapTask(dep.shuffleId, mapId, numOutputSplits, ser,
writeMetrics)
/** Write a bunch of records to this task's output */
override def write(records: Iterator[_ <: Product2[K, V]]): Unit = {
val iter = if (dep.aggregator.isDefined) {
if (dep.mapSideCombine) {
dep.aggregator.get.combineValuesByKey(records, context)
} else {
records
}
} else if (dep.aggregator.isEmpty && dep.mapSideCombine) {
throw new IllegalStateException("Aggregator is empty for map-side combine")
} else {
records
}
for (elem <- iter) {
val bucketId = dep.partitioner.getPartition(elem._1)
shuffle.writers(bucketId).write(elem)
}
}
SortShuffleWriter会把数据按顺序写入,并且保持存blockId文件和blockId.index文件。
private[spark] class SortShuffleWriter[K, V, C](
handle: BaseShuffleHandle[K, V, C],
mapId: Int,
context: TaskContext)
extends ShuffleWriter[K, V] with Logging {
private val dep = handle.dependency
private val numPartitions = dep.partitioner.numPartitions
private val blockManager = SparkEnv.get.blockManager
private val ser = Serializer.getSerializer(dep.serializer.orNull)
private val conf = SparkEnv.get.conf
private val fileBufferSize = conf.getInt("spark.shuffle.file.buffer.kb", 32) * 1024
private var sorter: ExternalSorter[K, V, _] = null
private var outputFile: File = null
private var indexFile: File = null
// Are we in the process of stopping? Because map tasks can call stop() with success = true
// and then call stop() with success = false if they get an exception, we want to make sure
// we don't try deleting files, etc twice.
private var stopping = false
private var mapStatus: MapStatus = null
private val writeMetrics = new ShuffleWriteMetrics()
context.taskMetrics.shuffleWriteMetrics = Some(writeMetrics)
/** Write a bunch of records to this task's output */
override def write(records: Iterator[_ <: Product2[K, V]]): Unit = {
if (dep.mapSideCombine) {
if (!dep.aggregator.isDefined) {
throw new IllegalStateException("Aggregator is empty for map-side combine")
}
sorter = new ExternalSorter[K, V, C](
dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer)
sorter.insertAll(records)
} else {
// In this case we pass neither an aggregator nor an ordering to the sorter, because we don't
// care whether the keys get sorted in each partition; that will be done on the reduce side
// if the operation being run is sortByKey.
sorter = new ExternalSorter[K, V, V](
None, Some(dep.partitioner), None, dep.serializer)
sorter.insertAll(records)
}
// Create a single shuffle file with reduce ID 0 that we'll write all results to. We'll later
// serve different ranges of this file using an index file that we create at the end.
val blockId = ShuffleBlockId(dep.shuffleId, mapId, 0)
outputFile = blockManager.diskBlockManager.getFile(blockId)
indexFile = blockManager.diskBlockManager.getFile(blockId.name + ".index")
val partitionLengths = sorter.writePartitionedFile(blockId, context)
// Register our map output with the ShuffleBlockManager, which handles cleaning it over time
blockManager.shuffleBlockManager.addCompletedMap(dep.shuffleId, mapId, numPartitions)
mapStatus = new MapStatus(blockManager.blockManagerId,
partitionLengths.map(MapOutputTracker.compressSize))
}
有关shuffle的细节,甚至是原理,都理解的不够深入,还有很多的需要学习。