过雁

--每天都被梦想唤醒--

   :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理
任务调度器的接口类。应用程序可以定制自己的调度器来执行。当前spark只实现了一个任务调度器TaskSchedulerImpl

===================task scheduler begin====================
-> TaskSchedulerImpl::submitTasks(taskSet: TaskSet)  处理接受task,它做了同步操作。
-> new TaskSetManager(this, taskSet, maxTaskFailures) 每个taskSet都会对应 一个TaskSetManager接管任务调度
->activeTaskSets(taskSet.id) = manager  记录为active taskSet
->schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)  --将taskManeger提交到调度器。
-> starvationTimer.scheduleAtFixedRate(  --起一个防饿死的定时器,默认15s后提示错误
->new TimerTask()
->backend.reviveOffers()  backend=(CoarseGrainedSchedulerBackend) --通知后台调度器,现在需要资源
->driverActor ! ReviveOffers
->makeOffers
  ->tasks = scheduler.resourceOffers(offers: Seq[WorkerOffer])-- 将所有资源作为参数
返回值Seq[Seq[TaskDescription]]为每个executor要执行的task列表
->val shuffledOffers = Random.shuffle(offers) --将所有资源随机排列后使用
->val sortedTaskSets = rootPool.getSortedTaskSetQueue --按优先级顺序获取要执行的taskSet序列
->schedulableQueue.toSeq.sortWith(taskSetSchedulingAlgorithm.comparator) 
将所有taskSet按优先级排列,后面专门再看排列的算法
->for (taskSet <- sortedTaskSets) 
->taskSet.executorAdded()
->for (taskSet <- sortedTaskSets; maxLocality <- taskSet.myLocalityLevels) 
->until (launchedTask) --每个taskSet只要得到一个资源,就不再获取资源了
->for (i <- 0 until shuffledOffers.size) --查找所有可用的资源
->for (task <- taskSet.resourceOffer(execId, host, maxLocality)) --对taskSet给出的所有task,都记录为需要执行
->launchTasks(tasks: scala.Seq[scala.Seq[TaskDescription]]) --Launch tasks returned by a set of resource offers
->for (task <- tasks.flatten)
->//如果task过大(默认10m),直接失败退出)
->executorActor(task.executorId) ! LaunchTask(new SerializableBuffer(serializedTask)) --CoarseGrainedSchedulerBackend 通知executor
                                      给调度到task的executor发送task,由Executor接管task的执行。到此,离最后的task.run()不远了~~
  ==================end================================

调度的过程和常理有点不同:我们一般认为是拿task去寻找合适的资源,但是spark中是拿资源去寻找合适的task。这可能是因为task(由RDD分解而来)是不变的,但是资源是不断变化的缘故。
TaskScheduler :调度接口,当前只有TaskSchedulerImpl实现了。应用可以提供自己的调度器
/**
* Low-level task scheduler interface, currently implemented exclusively by TaskSchedulerImpl.
* This interface allows plugging in different task schedulers. Each TaskScheduler schedulers tasks
* for a single SparkContext
. These schedulers get sets of tasks submitted to them from the
* DAGScheduler for each stage, and are responsible for sending the tasks to the cluster, running
* them, retrying if there are failures, and mitigating stragglers. They return events to the
* DAGScheduler
.
*/
private[spark] trait TaskScheduler {

def rootPool: Pool
def schedulingMode: SchedulingMode
def start(): Unit
// Invoked after system has successfully initialized (typically in spark context).
// Yarn uses this to bootstrap allocation of resources based on preferred locations,
// wait for slave registerations, etc.
def postStartHook() { }
// Disconnect from the cluster.
def stop(): Unit
// Submit a sequence of tasks to run.
def submitTasks(taskSet: TaskSet): Unit
// Cancel a stage.
def cancelTasks(stageId: Int, interruptThread: Boolean)
// Set the DAG scheduler for upcalls. This is guaranteed to be set before submitTasks is called.
def setDAGScheduler(dagScheduler: DAGScheduler): Unit
// Get the default level of parallelism to use in the cluster, as a hint for sizing jobs.
def defaultParallelism(): Int
/**
* Update metrics for in-progress tasks and let the master know that the BlockManager is still
* alive. Return true if the driver knows about the given block manager. Otherwise, return false,
* indicating that the block manager should re-register.
*/
def executorHeartbeatReceived(execId: String, taskMetrics: Array[(Long, TaskMetrics)],
blockManagerId: BlockManagerId): Boolean
}

/**
* Schedules tasks for multiple types of clusters by acting through a SchedulerBackend.
* It can also work with a local setup by using a LocalBackend and setting isLocal to true.
* It handles common logic, like determining a scheduling order across jobs, waking up to launch
* speculative tasks, etc
.
*
* Clients should first call initialize() and start(), then submit task sets through the
* runTasks method.
*    
* THREADING: SchedulerBackends and task-submitting clients can call this class from multiple
* threads, so it needs locks in public API methods to maintain its state. In addition, some
* SchedulerBackends synchronize on themselves when they want to send events here, and then
* acquire a lock on us, so we need to make sure that we don't try to lock the backend while
* we are holding a lock on ourselves.
*/
private[spark] class TaskSchedulerImpl(
val sc: SparkContext,
val maxTaskFailures: Int,
isLocal: Boolean = false)
extends TaskScheduler with Logging
主要属性:
// TaskSetManagers are not thread safe, so any access to one should be synchronized
// on this class.
val activeTaskSets = new HashMap[String, TaskSetManager]

val taskIdToTaskSetId = new HashMap[Long, String]
val taskIdToExecutorId = new HashMap[Long, String]
// Which executor IDs we have executors on
val activeExecutorIds = new HashSet[String]

// The set of executors we have on each host; this is used to compute hostsAlive, which
// in turn is used to decide when we can attain data locality on a given host
protected val executorsByHost = new HashMap[String, HashSet[String]]

protected val hostsByRack = new HashMap[String, HashSet[String]]

protected val executorIdToHost = new HashMap[String, String]
// Listener object to pass upcalls into
var dagScheduler: DAGScheduler = null

var backend: SchedulerBackend = null

val mapOutputTracker = SparkEnv.get.mapOutputTracker

var schedulableBuilder: SchedulableBuilder = null
var rootPool: Pool = null
初始化不同的调度算法
def initialize(backend: SchedulerBackend) {
this.backend = backend
// temporarily set rootPool name to empty
rootPool = new Pool("", schedulingMode, 0, 0)
schedulableBuilder = {
schedulingMode match {
case SchedulingMode.FIFO =>
new FIFOSchedulableBuilder(rootPool)
case SchedulingMode.FAIR =>
new FairSchedulableBuilder(rootPool, conf)
}
}
schedulableBuilder.buildPools()
}
override def submitTasks(taskSet: TaskSet) {
val tasks = taskSet.tasks
logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
this.synchronized {
val manager = new TaskSetManager(this, taskSet, maxTaskFailures)
activeTaskSets(taskSet.id) = manager
schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)

if (!isLocal && !hasReceivedTask) {
starvationTimer.
scheduleAtFixedRate(new TimerTask() {
override def run() {
if (!hasLaunchedTask) {
logWarning(
"Initial job has not accepted any resources; " +
"check your cluster UI to ensure that workers are registered " +
"and have sufficient memory")
}
else {
this.cancel()
}
}
}
, STARVATION_TIMEOUT, STARVATION_TIMEOUT)
}
hasReceivedTask = true
}
backend.reviveOffers()
}
/**
* Called by cluster manager to offer resources on slaves. We respond by asking our active task
* sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so
* that tasks are balanced across the cluster.
*/
def resourceOffers(offers: Seq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
def statusUpdate(tid: Long, state: TaskState, serializedData: ByteBuffer) {

TaskSetManager和TaskSet是意义对应的,它们可以等同看待resourceOffer是他的主要功能:根据输入的资源,给出taskSet需要执行的task列表。
/**
* Schedules the tasks within a single TaskSet in the TaskSchedulerImpl. This class keeps track of
* each task, retries tasks if they fail (up to a limited number of times), and
* handles locality-aware scheduling for this TaskSet via delay scheduling. The main interfaces
* to it are resourceOffer, which asks the TaskSet whether it wants to run a task on one node,
* and statusUpdate, which tells it that one of its tasks changed state (e.g. finished).
*
* THREADING: This class is designed to only be called from code with a lock on the
* TaskScheduler (e.g. its event handlers). It should not be called from other threads.
*
* @param sched the TaskSchedulerImpl associated with the TaskSetManager
* @param taskSet the TaskSet to manage scheduling for
* @param maxTaskFailures if any particular task fails more than this number of times, the entire
* task set will be aborted
*/
private[spark] class TaskSetManager(
sched: TaskSchedulerImpl
,
val taskSet: TaskSet,
val maxTaskFailures: Int,
clock: Clock = SystemClock)
extends Schedulable with Logging {
val copiesRunning = new Array[Int](numTasks)
val successful = new Array[Boolean](numTasks)
private val numFailures = new Array[Int](numTasks)
// key is taskId, value is a Map of executor id to when it failed
private val failedExecutors = new HashMap[Int, HashMap[String, Long]]()

val taskAttempts = Array.fill[List[TaskInfo]](numTasks)(Nil)
var tasksSuccessful = 0
// Set of pending tasks for each executor. These collections are actually
// treated as stacks, in which new tasks are added to the end of the
// ArrayBuffer and removed from the end. This makes it faster to detect
// tasks that repeatedly fail because whenever a task failed, it is put
// back at the head of the stack. They are also only cleaned up lazily;
// when a task is launched, it remains in all the pending lists except
// the one that it was launched from, but gets removed from them later.
private val pendingTasksForExecutor = new HashMap[String, ArrayBuffer[Int]]

// Set of pending tasks for each host. Similar to pendingTasksForExecutor,
// but at host level.
private val pendingTasksForHost = new HashMap[String, ArrayBuffer[Int]]

// Set of pending tasks for each rack -- similar to the above.
private val pendingTasksForRack = new HashMap[String, ArrayBuffer[Int]]

// Set containing pending tasks with no locality preferences.
var pendingTasksWithNoPrefs = new ArrayBuffer[Int]

// Set containing all pending tasks (also used as a stack, as above).
val allPendingTasks = new ArrayBuffer[Int]

// Tasks that can be speculated. Since these will be a small fraction of total
// tasks, we'll just hold them in a HashSet.
val speculatableTasks = new HashSet[Int]

// Task index, start and finish time for each task attempt (indexed by task ID)
val taskInfos = new HashMap[Long, TaskInfo]
// Figure out which locality levels we have in our TaskSet, so we can do delay scheduling
var myLocalityLevels = computeValidLocalityLevels()
var localityWaits = myLocalityLevels.map(getLocalityWait) // Time to wait at each level

// Delay scheduling variables: we keep track of our current locality level and the time we
// last launched a task at that level, and move up a level when localityWaits[curLevel] expires.
// We then move down if we manage to launch a "more local" task.
var currentLocalityIndex = 0 // Index of our current locality level in validLocalityLevels
var lastLaunchTime = clock.getTime() // Time we last launched a task at this level
/**
* Return a speculative task for a given executor if any are available. The task should not have
* an attempt running on this host, in case the host is slow. In addition, the task should meet
* the given locality constraint.
*/
private def findSpeculativeTask(execId: String, host: String, locality: TaskLocality.Value)
: Option[(Int, TaskLocality.Value)] =
调度器眼中的executor: 调度的过程和常理有点不同:我们一般认为是拿task去寻找合适的资源,但是spark中是拿资源去寻找合适的task。这可能是因为task(由RDD分解而来)是不变的,但是资源是不断变化的缘故。
/**
 * Respond to an offer of a single executor from the scheduler by finding a task
*
* NOTE: this function is either called with a maxLocality which
* would be adjusted by delay scheduling algorithm or it will be with a special
* NO_PREF locality which will be not modified
*
* @param execId the executor Id of the offered resource
* @param host the host Id of the offered resource
* @param maxLocality the maximum locality we want to schedule the tasks at
*/
def resourceOffer(
execId:
String,
host: String,
maxLocality: TaskLocality.TaskLocality)
: Option[TaskDescription] =
{

SchedulableBuilder定义了FIFO/FAIR两种调度算法。他们都是对Pool的封装,所以重点是Pool
/**
* An interface to build Schedulable tree
* buildPools: build the tree nodes(pools)
* addTaskSetManager: build the leaf nodes(TaskSetManagers)
*/
private[spark] trait SchedulableBuilder {
def rootPool: Pool

def buildPools()

def addTaskSetManager(manager: Schedulable, properties: Properties)
}
private[spark] class FIFOSchedulableBuilder(val rootPool: Pool)
private[spark] class FairSchedulableBuilder(val rootPool: Pool, conf: SparkConf)
extends SchedulableBuilder with Logging {
Pool: 对应文档中调度的group。每个Pool可以设置独立的调度算法。
/**
* An Schedulable entity that represent collection of Pools or TaskSetManagers
*/

private[spark] class Pool(
val poolName: String,
val schedulingMode: SchedulingMode,
initMinShare: Int,
initWeight: Int)
extends Schedulable
with Logging {
val schedulableQueue = new ConcurrentLinkedQueue[Schedulable]
val schedulableNameToSchedulable = new ConcurrentHashMap[String, Schedulable]

Schedulable: 调度器操作的对象需要实现这个接口,也就是实现这个接口的类都可以交给调度器根据优先级调度。就像Task对应executor一样。getSortedTaskSetQueue是主要方法,它按优先级顺序将task返回给外层调度器。
/**
* An interface for schedulable entities.
* there are two type of Schedulable entities(Pools and TaskSetManagers)
*/
private[spark] trait Schedulable {
var parent: Pool
// child queues
def schedulableQueue: ConcurrentLinkedQueue[Schedulable]
def schedulingMode: SchedulingMode
def weight: Int
def minShare: Int
def runningTasks: Int
def priority: Int
def stageId: Int
def name: String

def addSchedulable(schedulable: Schedulable): Unit
def removeSchedulable(schedulable: Schedulable): Unit
def getSchedulableByName(name: String): Schedulable
def executorLost(executorId: String, host: String): Unit
def checkSpeculatableTasks(): Boolean
def getSortedTaskSetQueue: ArrayBuffer[TaskSetManager]
}

CoarseGrainedSchedulerBackend:它是屏蔽各种资源管理算法的抽象。local、standalone、yarn-client等都是它的子类。而spark内部仅与CoarseGrainedSchedulerBackend交互,所以说他起了屏蔽左右。
/**
* A scheduler backend that waits for coarse grained executors to connect to it through Akka.
* This backend holds onto each executor for the duration of the Spark job rather than relinquishing
* executors whenever a task is done and asking the scheduler to launch a new executor for
* each new task. Executors may be launched in a variety of ways, such as Mesos tasks for the
* coarse-grained Mesos mode or standalone processes for Spark's standalone deploy mode
* (spark.deploy.*).
*/
private[spark]
class CoarseGrainedSchedulerBackend(scheduler: TaskSchedulerImpl, actorSystem: ActorSystem)
extends SchedulerBackend with Logging
主要属性:
// Use an atomic variable to track total number of cores in the cluster for simplicity and speed
var totalCoreCount = new AtomicInteger(0)
var totalRegisteredExecutors = new AtomicInteger(0)
val conf = scheduler.sc.conf
private val timeout = AkkaUtils.askTimeout(conf)
private val akkaFrameSize = AkkaUtils.maxFrameSizeBytes(conf)
// Submit tasks only after (registered resources / total expected resources)
// is equal to at least this value, that is double between 0 and 1.
var minRegisteredRatio =
math.min(1, conf.getDouble("spark.scheduler.minRegisteredResourcesRatio", 0))
// Submit tasks after maxRegisteredWaitingTime milliseconds
// if minRegisteredRatio has not yet been reached
val maxRegisteredWaitingTime =
conf.getInt("spark.scheduler.maxRegisteredResourcesWaitingTime", 30000)
val createTime = System.currentTimeMillis()

class DriverActor(sparkProperties: Seq[(String, String)]) extends Actor with ActorLogReceive {

override protected def log = CoarseGrainedSchedulerBackend.this.log

private val executorActor = new HashMap[String, ActorRef]
private val executorAddress = new HashMap[String, Address]
private val executorHost = new HashMap[String, String]
private val freeCores = new HashMap[String, Int]
private val totalCores = new HashMap[String, Int]
private val addressToExecutorId = new HashMap[Address, String]













posted on 2015-01-25 00:33  过雁  阅读(1193)  评论(0编辑  收藏  举报