博弈论与强化学习实战——CFR算法——剪刀石头布

博弈论与强化学习实战——CFR算法——剪刀石头布

感谢:

浅谈德州扑克AI核心算法:CFR - 掘金 (juejin.cn)

虚拟遗憾最小化算法(CFR)基础知识详解 - 知乎 (zhihu.com)

一 游戏介绍

4e309e6a-239a-11eb-8229-0e4309b44eaf

  1. 有两个参与者,

  2. 每个参与者有三个可选动作 剪刀石头布 ,分别用0,1,2表示

  3. 奖励:获胜奖励为1,失败奖励为-1,平局没有奖励,收益矩阵如下

    image-20221122192106254

  4. 博弈过程用博弈树进行描述:

    image-20221122214028542

    第二个玩家在决策的时候有三个可能的状态\(h1,h2,h3\),但由于三个状态在同一个信息集中,所以玩家2在决策的时候并不知到具体处于哪个信息集,所以玩家2的决策并不依赖于玩家1的行动结果,从效果上来看就等同于两者同时划拳。

  5. 玩家的策略即玩家选择三个不同动作的概率,

使用代码将游戏流程

#游戏设置
NUM_ACTIONS = 3  #可选的动作数量
actions = [0,1,2] # 0代表剪刀scissors , 1代表石头rock ,2 代表布 paper
actions_print=['剪刀','石头','布']
#动作的收益 ,两个人进行博弈,结果
utility_matrix = np.array([
                [0,-1,1],
                [1,0,-1],
                [-1,1,0]
])


"""基本信息初始化"""
# 玩家,初始化
#策略
player1_strategy = np.array([0,0,1])
player2_strategy = np.array([0.4,0.3,0.3])
#动作收益
player1_utility = np.zeros(3)
player2_utility = np.zeros(3)

"""1局游戏的过程"""

    print(f'----------------游戏开始-------------------')
    # 使用当前策略 选择动作
    action_p1 = np.random.choice(actions, p=player1_strategy)
    action_p2 = np.random.choice(actions, p=player2_strategy)
    print(f'玩家1 动作:{actions_print[action_p1]} ,玩家2 动作:{actions_print[action_p2]} .')
    # 得到收益
    reward_p1 = utility_matrix[action_p1, action_p2]
    reward_p2 = utility_matrix[action_p2, action_p1]
    # 输出游戏结果
    print(f'----游戏结束-----')
    print(f'玩家1 收益{reward_p1}  ,玩家2 收益{reward_p2}.')

    # 更新玩家的收益
    player1_utility[action_p1] += reward_p1
    player2_utility[action_p2] += reward_p2
    # 输出一局游戏后的动作收益矩阵
    print(f'收益更新---------动作:{actions_print[0]}        {actions_print[1]}         {actions_print[0]}')
    print(f'玩家1的累计收益   收益:{player1_utility[0]};      {player1_utility[1]};      {player1_utility[2]} ')
    print(f'玩家2的累计收益   收益:{player2_utility[0]};      {player2_utility[1]};      {player2_utility[2]} ')

二 问题引出

假定现在有一个玩家(玩家1)的策略(动作集合上的概率分布)为 0.4,0.3 ,0.3 ,那么玩家2的策略应该是怎样的呢?

方法一 :求解期望奖励最大的策略

假定玩家2的概率分别为a,b,(1-a-b)

那么其期望收益(奖励乘以发生的概率)为:

\[[(0.4* a) *0+(0.3* a) *-1+(0.3* a) *1]+ \\ [(0.4* b) *1+(0.3* b) *0+(0.3* b) *-1]+ \\ [(0.4* 1-a-b) *-1+(0.3*1- a-b) *1+(0.3* 1-a-b) *0] \\ =0.2b+0.1a-0.1 \]

要想使得收益最大,结果为\(b=1\),

所以玩家2的策略应为\([0,1,0]\),此时能够获得的期望奖励为\(0.1\)

方法2 : 使用CFR算法求解

方法3 :使用强化学习方法求解

扩展问题:

  • 当对战双方都使用相同的算法进行学习,最终结果会不会达到均衡?
  • 当双方使用不同的学习算法进行学习,哪个算法达到均衡速度更快?

三 CFR算法求解

1 Regret matching 算法

1 遗憾值的定义

\[R^{T}(a)=\sum_{t} a \cdot r^{t}-\sum_{t} \sigma^{t} \cdot r^{t} \]

含义: 选择动作a和事实上的策略(概率\(\sigma\))产生的收益的差别 ,也就是遗憾值(本可以获得更多) ;

遗憾值大于0表示动作\(a\)比当前策略更好,遗憾值小于0表示动作\(a\)不如当前策略

2 Regret matching 算法

\[\sigma^{T}(a)= \frac{R^{T-1}(a)^{+}}{\sum_{b \in A} R^{T-1}(b)^{+}} , \\ where\ x^+ = max(x,0) \]

上式中 \(R^{T-1}(a)\)表示动作\(a\)的历史遗憾值,然后对其和0取最大值。

和0取最大值目的是要得到累计正的遗憾值,因为只有正的遗憾值对应的动作才是改进的方向。

这个结果就是得到历史遗憾为正的动作,在所有的正的历史遗憾对应的动作计算其分布(也就是概率)然后作为下一次博弈的策略

3 算法流程

Regret matching算法流程为:

  • 对于每一位玩家,初始化所有累积遗憾为0。

  • for from 1 to T(T:迭代次数):

    ​ a)使用当前策略与对手博弈

    ​ b)根据博弈结果计算动作收益,利用收益计算后悔值

    ​ c)历史后悔值累加

    ​ d)根据后悔值结果更新策略

  • 返回平均策略(累积后悔值/迭代次数)

作者:行者AI
链接:https://juejin.cn/post/7057430423499964424
来源:稀土掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

4 代码实现

完整代码:

# -*- coding: utf-8 -*-

"""
@author     : zuti
@software   : PyCharm
@file       : rock_cfr.py
@time       : 2022/11/21 9:26
@desc       :

"""
import numpy as np

#动作设置
NUM_ACTIONS = 3  #可选的动作数量
actions = [0,1,2] # 0代表剪刀scissors , 1代表石头rock ,2 代表布 paper
actions_print=['剪刀','石头','布']
#动作的收益 ,两个人进行博弈,结果
utility_matrix = np.array([
                [0,1,-1],
                [-1,0,1],
                [1,-1,0]
])


"""基本信息初始化"""
# 玩家,初始化
#策略
player1_strategy = np.array([0.4,0.3,0.3])
player2_strategy = np.array([1/3,1/3,1/3])
#动作收益
player1_utility = np.zeros(3)
player2_utility = np.zeros(3)
#遗憾值
player2_regret = np.zeros(3)
#每一局策略(动作的概率分布)之和
player2_strategy_count = np.zeros(3)


for i in range(10000):
    """1局游戏的过程"""
    #对策略进行计数
    player2_strategy_count += player2_strategy
    print(f'----------------游戏开始-------------------')
    # 使用当前策略 选择动作
    action_p1 = np.random.choice(actions, p=player1_strategy)
    action_p2 = np.random.choice(actions, p=player2_strategy)
    print(f'玩家1 动作:{actions_print[action_p1]} ,玩家2 动作:{actions_print[action_p2]} .')
    # 得到收益
    reward_p1 = utility_matrix[action_p2, action_p1]
    reward_p2 = utility_matrix[action_p1, action_p2]
    # 输出游戏结果
    print(f'----游戏结束-----')
    print(f'玩家1 收益{reward_p1}  ,玩家2 收益{reward_p2}.')

    # 更新玩家的收益
    player1_utility[action_p1] += reward_p1
    player2_utility[action_p2] += reward_p2
    # 输出一局游戏后的动作收益矩阵
    print(f'收益更新---------动作:{actions_print[0]}        {actions_print[1]}         {actions_print[2]}')
    print(f'玩家1的累计收益   收益:{player1_utility[0]};      {player1_utility[1]};      {player1_utility[2]} ')
    print(f'玩家2的累计收益   收益:{player2_utility[0]};      {player2_utility[1]};      {player2_utility[2]} ')
    #
    """遗憾值更新"""
    # 根据结果收益计算所有动作的遗憾值
    for a in range(3):
        # 事后角度 选择别的动作的收益
        counterfactual_reward_p2 = utility_matrix[action_p1,a ]  # 如果选择动作a(而不是事实上的动作action_p1) ,会获得的收益
        regret_p2 = counterfactual_reward_p2 - reward_p2  # 选择动作a和事实上的动作action_p1产生的收益的差别 ,也就是遗憾值(本可以获得更多)
        # 更新玩家的动作遗憾值,历史遗憾值累加
        player2_regret[a] += regret_p2

    print(f'遗憾值更新--------动作:{actions_print[0]}         {actions_print[1]}          {actions_print[0]}')
    print(f'玩家2的累计遗憾值     {player2_regret[0]};      {player2_regret[1]};         {player2_regret[2]} ')

    """根据遗憾值更新策略"""
    """遗憾值归一化"""
    # 归一化方法: 1 只看遗憾值大于0的部分,然后计算分布
    palyer2_regret_normalisation = np.clip(player2_regret, a_min=0, a_max=None)
    print(f'遗憾值归一化')
    print(f'玩家1归一化后的累计遗憾值     {palyer2_regret_normalisation [0]};      {palyer2_regret_normalisation [1]};         {palyer2_regret_normalisation [2]} ')
    """根据归一化后的遗憾值产生新的策略"""
    palyer2_regret_normalisation_sum = np.sum(palyer2_regret_normalisation)  # 求和
    if palyer2_regret_normalisation_sum > 0:
        player2_strategy = palyer2_regret_normalisation / palyer2_regret_normalisation_sum
    else:
        player2_strategy = np.array([1 / 3, 1 / 3, 1 / 3]) #否则就采取平均策略



"""最终结果:得到平均策略"""
print(f'-----迭代结束,得到最终的平均策略---------')
#根据累计的策略计算平均策略
average_strategy = [0, 0, 0]
palyer2_strategy_sum = sum(player2_strategy_count)
for a in range(3):
    if palyer2_strategy_sum > 0:
        average_strategy[a] = player2_strategy_count[a] / palyer2_strategy_sum
    else:
        average_strategy[a] = 1.0 / 3
print(f'玩家2经过迭代学习得到的平均策略为')
print(f'玩家2的动作 \n 动作:{actions_print[0]} 概率:{average_strategy[0]};动作:{actions_print[1]} 概率:{average_strategy[1]};动作:{actions_print[2]} 概率:{average_strategy[2]} ')


2 CFR算法

1 博弈树中间结点的收益

概念

基于终止状态的收益\(u\)对博弈树中的每个节点都定义一个收益。

最主要的目的是给出博弈树中的中间非叶子结点的收益。

当玩家\(p\)遵循策略\(σ\)时,对于博弈树中任意的一个状态\(h\),该状态的收益定义为:

\[u_{p}^{\sigma}(h)=\sum_{z \in Z, h \sqsubset z} \pi^{\sigma}(z) u_{p}(z) \]

式子中,\(u_p(z)\) 按着前面的定义即为 玩家\(p\)到达终止状态\(z\)(叶子节点)所获得的收益;

前面的\(\pi^\sigma(z)\)表示从初始状态出发,当所有玩家都遵循策略\(σ\)时,到达终止状态\(z\)的概率;

求和即表示从初始状态开始把所有包含路径\(h\)到达终点\(z\)的序列进行求和

这个收益即表示 玩家\(p\) 从博弈起点到中间状态\(h\) 再根据策略\(\sigma\)到达终点\(z\)得到的收益。

可以将右端前一项根据概率式1 进行拆分 ,得到

\[\begin{aligned} u_{p}^{\sigma}(h) &=\sum_{z \in Z, h \sqsubset z} \pi^{\sigma}(z) u_{p}(z) \\ &=\sum_{z \in Z, h \sqsubset z} \pi_{p}^{\sigma}(z) \pi_{-p}^{\sigma}(z) u_{p}(z) \ 参与者拆分(1) \\ &=\sum_{z \in Z, h \sqsubset z} \pi^{\sigma}(h) \pi^{\sigma}(z \mid h) u_{p}(z) \ 路径拆分(3) \\ &=\pi_{p}^{\sigma}(h) \sum_{z \in Z, h \sqsubset z} \pi_{-p}^{\sigma}(h) \pi^{\sigma}(z \mid h) u_{p}(z) 参与者+路径拆分(1)+(3) \end{aligned} \]

根据此定义,整局游戏的收益即为博弈树根节点的收益 $ u_{p}{\sigma}=u_{p}(\varnothing) $

当玩家\(p\)遵循策略\(σ\)时,对于博弈树中的一个信息集\(I \in \mathcal{I}\)的收益定义为:

\[u_{p}^{\sigma}(I)=\sum_{h \in I} u_{p}^{\sigma}(h) \]

算例

这里给出第二个问题作为一个计算的例子:

玩家\(p\)(为玩家2),其策略\(\sigma\)\([a,b,1-a-b]\) ,其他玩家\(-p\)(也就是玩家1)的策略\(\sigma\)\([0.4,0.3,0.3]\),博弈树见上。

根据上述定义,我们来尝试计算博弈树中间结点\(h1\)的收益

首先,包含中间结点\(h1\),从游戏开始到达最终结果\(z1,z2,z3\)的路径总共3条。

根据定义式:

第二项:玩家\(p\)玩家2在最终结果的收益分别为

\[u_{p2}(z1)=0 , u_{p2}(z2)= 1, u_{p2}(z3)= -1 \]

第一项:从起点出发,经过中间结点\(h1\),到达最终结果\(z1,z2,z3\)的概率,根据玩家\(p2\)\(-p\)(也就是玩家1)的策略\(\sigma\)计算为

\[0.4a,0.4b,0.4(1-a-b) \]

概率乘以收益再求和便得到了博弈树中间结点\(h1\)的收益

\[\begin{aligned} u_{p2}^{\sigma}(h1) &= \sum_{z \in Z, h \sqsubset z} \pi^{\sigma}(z) u_{p2}(z) \\ &= 0.4a * 0 + 0.4 b* 1+0.4(1-a-b) *-1 \\ &= 0.4a+0.8b-0.4 \end{aligned} \]

同样的方法还可以得到博弈树中间结点\(h2,h3\)的收益

\[\begin{aligned} u_{p2}^{\sigma}(h2) &= \sum_{z \in Z, h \sqsubset z} \pi^{\sigma}(z) u_{p}(z) \\ &= 0.3a * -1 + 0.3 b* 0+0.3(1-a-b) *1 \\ &= -0.6a-0.3b+0.3 \end{aligned} \begin{aligned} u_{p2}^{\sigma}(h3) &= \sum_{z \in Z, h \sqsubset z} \pi^{\sigma}(z) u_{p}(z) \\ &= 0.3a * 1 + 0.3 b* -1+0.3(1-a-b) *0 \\ &= 0.3a - 0.3b \end{aligned} \]

信息集\(I\)包含三个结点\(h1,h2,h3\),因此信息集\(I\)的收益为

\[\begin{aligned} u_{p2}^{\sigma}(I) &=\sum_{h \in I} u_{p2}^{\sigma}(h) \\ &=u_{p2}^{\sigma}(h1)+u_{p2}^{\sigma}(h2)+u_{p2}^{\sigma}(h3) \\ &= 0.1a+0.2b-0.1 \end{aligned} \]

理解:信息集\(I\)的收益是基于玩家\(-p\)(玩家1)的策略\(\sigma\) 和 从开始到达最终结点的各条路径。

如果玩家\(p\)(玩家2)想使在信息集\(I\)的收益最大,那么玩家\(p\)(玩家2)的策略(动作集合上的概率)为\([0,1,0]\),能够获得的期望收益为\(0.1\)

这个结果和我们之前的计算是一致的。由于信息集,所以遍历这个博弈树和矩阵博弈的效果是完全相同的。

2 反事实值

概念

\[v_{p}^{\sigma}(h)=\sum_{z \in Z, h \sqsubset z} \pi_{-p}^{\sigma}(h) \pi^{\sigma}(z \mid h) u_{p}(z) \]

看这个式子的定义:

右端第一项\(\pi_{-p}^{\sigma}(h)\) 表示 其他玩家\(-p\)选择策略\(\sigma\) 从起点到达中间结点\(h\)的概率 ;

第二项\(\pi^{\sigma}(z \mid h)\) 表示路径 经过中间结点\(h\),然后根据策略\(\sigma\)到达最终结点\(z\)的概率 ,

右端第三项 表示 玩家\(p\)在最终结点\(z\)的收益 , 然后对所有经过中间结点\(h\)到达最终结点\(z\)的路径进行求和。

结合第2小节中关于\(π\)概率的三个等式,我们可以很容易地推导出状态\(h\)的收益值与反事实值之间的关系:

\[\begin{aligned} u_{p}^{\sigma}(h)&=\Sigma_{z \in Z, h \sqsubset z} \pi^{\sigma}(z) u_{p}(z) \\ &=\Sigma_{z \in Z, h \sqsubset z} \pi^{\sigma}(h) \pi^{\sigma}(z \mid h) u_{p}(z) \\ & =\Sigma_{z \in Z, h \sqsubset z} \pi_{p}^{\sigma}(h) \pi_{-p}^{\sigma}(h) \pi^{\sigma}(z \mid h) u_{p}(z) \\ & =\pi_{p}^{\sigma}(h) \Sigma_{z \in Z, h \sqsubset z} \pi_{-p}^{\sigma}(h) \pi^{\sigma}(z \mid h) u_{p}(z) \\ & =\pi_{p}^{\sigma}(h) v_{p}^{\sigma}(h) \\ \end{aligned} \]

玩家p在结点\(h\)的期望收益既与其他玩家\(-p\)的策略\(\pi_{-p}^{\sigma}(h)\)和到终点玩家\(p\)的收益\(u_{p}(z)\),又和玩家p的策略\(\pi_{p}^{\sigma}(h)\)有关。

当终点收益和其他玩家的策略等其他因素是一定的时候,玩家\(p\)在结点\(h\)的期望收益就只与玩家\(p\)的策略有关,这时候把除玩家\(p\)的策略以外的因素(其他玩家的策略和收益的乘积),即不考虑玩家\(p\)的策略影响下玩家\(p\)在结点\(h31\)收益期望 称之为反事实值。

当除玩家\(p\)的策略以外的因素固定的情况下,玩家\(p\)在结点\(h\)的期望收益就只取决于玩家\(p\)的策略,当玩家选定自己的策略想要到达这个状态时候,玩家可以获得一个在这个状态的期望收益,如果玩家\(p\)特别想要到达这个状态,这时候\(\pi_{p}^{\sigma}(h)=1\),这个时候有两个含义,一当结点\(h\)实在玩家选择动作之前的结点,其含义为是玩家\(p\)的策略不影响这个中间状态期望的收益,二当结点\(h\)实在玩家选择动作之前的结点,其含义为玩家选择策略\(\sigma\),想要尽力促成这个结果,获得一个在结点\(h\)的收益。

\(\pi_{p}^{\sigma}(h)=0\)的时候,这时只有结点\(h\)在玩家\(p\)之后才有这个情况,这个时候玩家采取策略\(\sigma\)(动作分布为\([0,a,\cdots,z]\))的目的是来尽量避免到达中间结点\(h\)

反事实值实际上就反映了不考虑玩家\(p\)采取策略\(\sigma\)对到达中间结点\(h\)的影响的时候,事实上玩家\(p\)的期望收益。

同样的,将概念扩展到信息集上有 the counterfactual value for player $p $ of an information set \(I \in \mathcal{I}_p\) is

\[v_{p}^{\sigma}(I)=\sum_{h \in I} v_{p}^{\sigma}(h) \\ v_{p}^{\sigma}(I \cdot a)=\sum_{h \in I \cdot a} v_{p}^{\sigma}(h) \]

算例

同样给出第二个问题作为一个计算的例子:

玩家\(p2\)(为玩家2),其策略\(\sigma\)\([a,b,1-a-b]\) ,其他玩家\(-p\)(也就是玩家1)的策略\(\sigma\)\([0.4,0.3,0.3]\),博弈树见上。

根据上述定义,我们来尝试计算博弈树中间结点\(h1\)的收益

首先,包含中间结点\(h1\),从游戏开始到达最终结果\(z1,z2,z3\)的路径总共3条,

根据定义式

右端第一项\(\pi_{-p}^{\sigma}(h)\) 表示 其他玩家\(-p\)(也就是玩家1)选择策略\(\sigma\) 从起点到达中间结点\(h1\)的概率 :

\[\pi_{-p}^{\sigma}(h1) = 0.4 \]

第二项\(\pi^{\sigma}(z \mid h)\) 表示路径 经过中间结点\(h\),然后根据策略\(\sigma\)到达最终结点\(z\)的概率 ;右端第三项 表示 玩家\(p\)(玩家2)在最终结点\(z\)的收益 ;两者相乘表示经过中间结点的收益

\[u_p(z1)=0 , u_p(z2)= 1, u_p(z3)= -1 \\ \pi^{\sigma}(z1 \mid h1) = a,\pi^{\sigma}(z2 \mid h1) =b ,\pi^{\sigma}(z3 \mid h1) = 1-a-b \]

相乘求和就得到了中间结点\(h1\)的反事实值

\[\begin{aligned} v_{p2}^{\sigma}(h1) &=\sum_{z \in Z, h1 \sqsubset z} \pi_{-p}^{\sigma}(h1) \pi^{\sigma}(z \mid h1) u_{p2}(z) \\ &= 0.4a * 0 + 0.4 b* 1+0.4(1-a-b) *-1 \\ &= 0.4a+0.8b-0.4 \end{aligned} \]

这里计算出来的反事实值与前面计算出来的收益值相等,而两者其实是有如下关系的

\[u_{p}^{\sigma}(h) =\pi_{p}^{\sigma}(h) v_{p}^{\sigma}(h) \\ \]

在这里也就是

\[u_{p2}^{\sigma}(h1) =\pi_{p2}^{\sigma}(h1) v_{p2}^{\sigma}(h1) \]

根据我们的计算又有

\[u_{p2}^{\sigma}(h1) = v_{p2}^{\sigma}(h1) \]

所以唯一的解释就是

\[\pi_{p2}^{\sigma}(h1) =1 \]

这里怎么来理解呢:

玩家\(p2\)选择策略\(\sigma\)到达中间结点\(h1\)的概率为1,也就是到达中间结点\(h1\)和玩家\(p2\)的策略无关。这是因为结点\(h1\)是在玩家\(p2\)采取行动之前的结点,所以玩家采取的策略不影响这个结点的期望收益。

只有当玩家\(p\)的策略选择影响到后续中间结点\(h\)的时候,玩家\(p\)在中间结点\(h\)的收益和玩家\(p\)在中间结点\(h\)的反事实值会有差别,差别就是玩家选择的策略\(\pi^\sigma_p(h)\)(动作概率),选择该动作的概率越小,反事实值越大。下面给出一个示例进行说明.。

image-20221123105723503

博弈树如上图所示,有三个参与者:玩家1,玩家2,玩家3 ,博弈的过程为玩家1,玩家2,玩家3依次行动。

玩家1有三个动作\([0,1,2]\),其策略(动作概率)为\([0.4,0.3,0.3]\)。玩家2有两个动作,其策略为\([a,1-a]\)。玩家3有两个动作,其策略为\([b,1-b]\)

可以参照上面的过程来计算玩家2在结点\(h31\)的收益\(u^\sigma_{p2}(h31)\)和反事实值\(v^\sigma_{p2}(h31)\)

收益计算:把所有从游戏起点经过中间结点\(h31\)的路径的概率乘以收益求和

\[\begin{aligned} u^\sigma_{p2}(h31) &= \sum_{z1,z2} \pi^{\sigma}(z) u_{p2}(z) \\ & = (0.4 \cdot a \cdot b) *r1 +(0.4 \cdot a \cdot 1-b) *r2 \\ \end{aligned} \]

反事实值计算:除玩家p2以外的人遵循策略到达中间结点\(h31\)的概率 乘以 从中间结点\(h31\)到结果\(z1,z2\)的不同路径的分布及收益

\[\begin{aligned} v_{p2}^{\sigma}(h31) &= \sum_{z1,z2} \pi_{-p}^{\sigma}(h31) \pi^{\sigma}(z \mid h31) u_{p2}(z) \\ &= 0.4 *b* r1 + 0.4 *1-b * r2 \\ \end{aligned} \]

两者的差别就是

\[\pi_{p2}^{\sigma}(h31) = a \\ u^\sigma_{p2}(h31) = a * v_{p2}^{\sigma}(h31) \]

当其他玩家的策略和结点收益是既定的时候,后面这一项是事实既定,它不随玩家\(p2\)的策略改变。

​ 当\(p2\)想要到达结点\(h2\)时,它可以提高选择动作\(0\)的比重,即当策略为\([1,0]\)时,玩家\(p2\)在结点\(p2\)的收益为\(1 * v_{p2}^{\sigma}(h31)\)

​ 当\(p2\)不想要到达结点\(h2\)时,它可以降低选择动作\(0\)的比重,即当策略为\([0,1]\)时,玩家\(p2\)在结点\(p2\)的收益为\(0\),这个时候也就是由于玩家\(p2\)的策略选择,结点\(h2\)是永远不可能到达的,即这个结点事实上是不存在的。

当玩家\(p2\)的策略和结点的收益是固定的时候,其他玩家的策略选择就决定了玩家\(p2\)在结点\(h31\)的收益。这时侯,反事实值越大,反映其他玩家通过选择策略,想要到达这个结点。反事实值越小,反映其他玩家选择策略,想要尽量避免到达这个结点,其他玩家可以调整策略使得$v_{p2}^{\sigma}(h31) =0 \(,这个时候结点\)h31$就是不存在的。

当玩家2选择动作0的概率a越大,玩家2在中间结点\(h31\)获得的期望奖励值就越大。因为只有到达结点\(h31\)才会有中间这个结点的奖励,如果不到达结点\(h31\)(此时,动作a的概率为0),那么自然玩家2在结点\(h31\)就不会有收益。

玩家p2在结点\(h31\)的期望收益既与其他玩家的策略和终点收益,又和玩家p2的策略有关。当其他因素是一定的时候,就只与玩家p2的策略有关,把从其他玩家的策略和收益的乘积即不考虑\(p2\)的策略影响下结点\(h31\)收益期望 称之为反事实值。

把结点收益固定,那么玩家\(p2\)选择动作0的概率(也就是玩家2的策略)会影响反事实值的大小。

\(a\)越大,反事实值越小。如果\(a\)是1,此时反事实值和收益相等,就说明此时玩家2的动作是固定的或者玩家2的策略不影响状态\(h2\)出现的概率,这个时候说明玩家2采取策略\(\sigma=[1,0]\)一定能够到达状态\(h31\)

\(a\)越小,反事实值越大。如果\(a\)是0.0001,此时反事实值比上述情况大得多,说明当玩家2采取策略\(\sigma=[0.0001,0.9999]\)时,能够到达状态\(h31\)的可能性很小。

反事实值\(v_{p2}^{\sigma}(h31)\)就说明了玩家\(p2\)选择策略\(\sigma\)对到达状态\(h31\)的可能性,反事实值越大,说明在玩家2使用策略\(\sigma\)时越不可能到达状态\(h31\) ,当反事实值与收益相等的时候就说明玩家\(p2\)选择策略\(\sigma\)不影响到达状态\(h31\)的可能性或者所选择的策略能够一定到达状态\(h31\)

3 反事实遗憾

概念

\[R^{T}(I, a)=\sum_{t=1}^{T} v_{p}^{\sigma^{t}}(I \cdot a)-\sum_{t=1}^{T} \sum_{a \in A(I)} \sigma^{t}(I, a) v_{p}^{\sigma^{t}}(I, a) \]

其定义是基于某个信息集\(I\)和在这个信息集上的特定动作来定义的。

右端后面一项,是对在该信息集上动作期望遗憾值的累和,右端第一项选取该动作的遗憾值。

算例

同样给出第二个问题作为一个计算的例子:

玩家\(p2\)(为玩家2),其策略\(\sigma\)\([a,b,1-a-b]\) ,其他玩家\(-p\)(也就是玩家1)的策略\(\sigma\)\([0.4,0.3,0.3]\),博弈树见上。

根据上述定义,我们来尝试计算博弈树在第一次迭代时候,玩家\(p2\)在信息集\(I=\{h1,h2,h3\}\)采取动作\(a=0\)的反事实遗憾\(R^1(I,a)\)

由于是第一次迭代,没有历史信息

\[R^1(I,0) =R^0(I,0)+ v_{p2}^{\sigma^{t1}}(I \cdot 0) - \sum_{a \in [0,1,2]} \sigma^{t}(I, a) v_{p}^{\sigma^{t}}(I, a) \\ R^0(I,0) = 0(因为是第一次迭代,所以累计值为0) \]

首先计算反事实收益

\[\begin{aligned} v_{p}^{\sigma^{t}}(I, a) &=\sum_{h \in I \cdot a} v_{p}^{\sigma^{t}}(h) \\ &=\sum_{h \in I \cdot a} \sum_{z \in Z, h \sqsubset z} \pi_{-p}^{\sigma^{t}}(h) \pi^{\sigma^{t}}(z \mid h) u_{p}(z) \end{aligned} \]

\[\begin{aligned} v_{p2}^{\sigma^{t}}(I, 0) &= v_{p2}^{\sigma^{t}}(h1 , 0)+v_{p2}^{\sigma^{t}}(h2 , 0)+v_{p2}^{\sigma^{t}}(h3 , 0) \\ &=[\pi_{-p}(h1,0)\pi(z1|h1,0)u_p(z1)]+ [\pi_{-p}(h2,0)\pi(z4|h2,0)u_p(z4)] +[\pi_{-p}(h3,0)\pi(z7|h3,0)u_p(z7)] \\ &=0.4 * 1* 0+ 0.3 *1 *-1 +0.3*1*1 \end{aligned} \]

同样还可以得到

\[\begin{aligned} v_{p2}^{\sigma^{t}}(I, 1) &= v_{p2}^{\sigma^{t}}(h1 , 1)+v_{p2}^{\sigma^{t}}(h2 , 1)+v_{p2}^{\sigma^{t}}(h3 \cdot 1) \\ &=[\pi_{-p}(h1,1)\pi(z2|h1,0)u_p(z2)]+ [\pi_{-p}(h2,1)\pi(z4|h2,a)u_p(z4)] +[\pi_{-p}(h3,1)\pi(z8|h3,1)u_p(z8)] \\ &=0.4 * 1* 1+ 0.3 *1 *0 +0.3*1*-1 \end{aligned} \]

\[\begin{aligned} v_{p2}^{\sigma^{t}}(I, 2) &= v_{p2}^{\sigma^{t}}(h1 , 2)+v_{p2}^{\sigma^{t}}(h2 , 2)+v_{p2}^{\sigma^{t}}(h3 \cdot 2) \\ &=[\pi_{-p}(h1,2)\pi(z3|h1,2)u_p(z3)]+ [\pi_{-p}(h2)\pi(z6|h2,2)u_p(z6)] +[\pi_{-p}(h3)\pi(z9|h3,2)u_p(z9)] \\ &=0.4 * 1*- 1+ 0.3 *1 *1 +0.3*1*0 \end{aligned} \]

在信息集\(I\)上选择动作\(0,1,2\)的概率分别为​

\[\sigma^1(I,0) = a\\ \sigma^1(I,1) = b\\ \sigma^1(I,2) = 1-a-b\\ \]

因此在信息集\(I\)上的期望反事实值为

\[\begin{aligned} &\sum_{a \in [0,1,2]} \sigma^{t}(I, a) v_{p}^{\sigma^{t}}(I, a) \\ &= 0 * a + 0.1 *b + (-0.1) *(1-a-b) \\ &=0.1a+0.2b-0.1 \end{aligned} \]

经过上述计算我们会发现此时计算出来的玩家\(p2\)在信息集\(I\)上的期望反事实值和在第一部分计算出来的信息集\(I\)上玩家\(p2\)的期望收益是一样的。其原因就是信息集\(I\)的出现并不依赖于玩家\(p2\)的动作。

反事实遗憾为

\[R^1(I,0) =R^0(I,0)+ v_{p2}^{\sigma^{t1}}(I \cdot 0) - \sum_{a \in [0,1,2]} \sigma^{t}(I, a) v_{p}^{\sigma^{t}}(I, a) \\ = 0 +0 - (0.1a+0.2b-0.1) \]

因此。第一次迭代时,玩家\(p2\)在信息集\(I\)上采取动作\(0\)的反事实遗憾为\(- (0.1a+0.2b-0.1)\)

4 原始CFR算法

算法步骤:

  1. Generate strategy profile σt from the regrets, as described above.

    根据regret-matching算法计算本次博弈的策略组

    For all $ I \in \mathcal{I}, a \in A(I) $, and $ p=p(I) $:

    \[\sigma_{p}^{t}(I, a)=\left\{\begin{array}{ll}R^{t}(I, a)^{+} / \sum_{b \in A(I)} R^{t}(I, b)^{+} & \sum_{b \in A(I)} R^{t}(I, b)^{+}>0 \\ \frac{1}{|A(I)|} & \text { otherwise }\end{array}\right. \]

    因为动作\(a\)的遗憾值为正表示该动作正确,在下次迭代中无需更改,体现了遗憾匹配算法“有错就改,无错不改”的特点。

    其中如果所有动作的遗憾值为0,则在下次迭代中采取每一种动作的概率相同。

  2. Update the average strategy profile to include the new strategy profile.

    使用上一步中新计算的策略组更新平均策略组

    For all $ I \in \mathcal{I}, a \in A(I) $, and $ p=p(I) $:

    \[\begin{aligned} \bar{\sigma}_{p}^{t}(I, a) &=\frac{1}{t} \sum_{t^{\prime}=1}^{t} \pi_{p}^{\sigma^{t}}(I) \sigma_{p}^{t^{\prime}}(I, a) \\ &=\frac{t-1}{t} \bar{\sigma}_{p}^{t-1}(I, a)+\frac{1}{t} \pi_{p}^{\sigma^{t}}(I) \sigma_{p}^{t}(I, a) \end{aligned} \]

    上式表示玩家\(p\)的平均策略\(\bar{\sigma}_{p}^{t}(I, a)\),即为前\(t\)次的即时策略的平均值

  3. Using the new strategy profile, compute counterfactual values.

    使用第一步计算的新策略组计算双方参与者的反事实收益值

    For all $ I \in \mathcal{I}, a \in A(I) $, and $ p=p(I) $:

    \[\begin{aligned} v_{p}^{\sigma^{t}}(I, a) &=\sum_{h \in I \cdot a} v_{p}^{\sigma^{t}}(h) \\ &=\sum_{h \in I \cdot a} \sum_{z \in Z, h \sqsubset z} \pi_{-p}^{\sigma^{t}}(h) \pi^{\sigma^{t}}(z \mid h) u_{p}(z) \end{aligned} \]

  4. Update the regrets using the new counterfactual values.

    使用反事实收益值更新遗憾值

    For all $ I \in \mathcal{I}, a \in A(I) $, and $ p=p(I) $:

    \[R^{t}(I, a)=R^{t-1}(I, a)+v_{p}^{\sigma^{t}}(I, a)-\sum_{a \in A(I)} \sigma^{t}(I, a) v_{p}^{\sigma^{t}}(I, a) \]

  • 对于每一位玩家,初始化反事实遗憾值\(R^t(I,a)\)为0 平均策略\(\bar{\sigma}_p(I,a)\)为0 ,初始化策略为随机策略

  • for from 1 to T(T:迭代次数):

    ​ a) 根据regret-matching算法计算本次博弈的策略组\(\sigma_p^t(I,a)\)

    ​ a)使用当前策略更新平均策略\(\bar{\sigma}^t_p(I,a)\)

    ​ c)计算反事实收益值\(v^{\sigma^t}_p(I,a)\)

    ​ d) 使用反事实收益值计算遗憾值\(R^t(I,a)\)

  • 返回平均策略(累积后悔值/迭代次数)

伪代码:

image-20221110165435101

算法分析:

通过上述算法步骤我们可以得到:

对于每个信息集\(I\)和动作\(a\) , \(R\)\(\bar{\sigma}\)都相当于一个历史列表,存储了过去迭代过程中的累计遗憾值和累计平均策略 。 \(\sigma\)\(v\)是临时列表,用来存储当前的策略和反事实值。

值得注意的是,虽然 CFR 处理的都是行为策略(即在每个信息集上动作的概率分布),但求平均策略的过程,是在混合策略或序列形式策略的空间中进行的。使用序列形式进行描述, 维持一个玩家\(p\)的平均策略, 是通过在每个信息集\(I \in \mathcal{I}\)和动作\(a \in A(I)\)上 增量地更新$ \bar{\sigma}{p}(I, a)=\sum^{T} \pi_{p}^{t}(I) \sigma^{t}(I, a) $完成的。这里,我们忽略了上面给出的算法步骤第二种把和转化为平均的形式,这是因为在将序列形式的策略转化为行为形式的策略 其实是涉及到了 在每个信息集上的概率的正则化。

通过在博弈树的状态深度优先遍历中结合策略计算、平均策略更新和价值计算,可以提高 CFR 的实现效率。算法在下一部分

代码实现

# -*- coding: utf-8 -*-

"""
@author     : zuti
@software   : PyCharm
@file       : rockpaperscissors_cfr_1.py
@time       : 2022/11/24 15:51
@desc       :
尝试使用CFR算法来实现剪刀石头布游戏
第一次尝试,使用算法流程进行

"""
import numpy as np

"""游戏设置"""
# 动作设置
NUM_ACTIONS = 3  # 可选的动作数量
actions = [0, 1, 2]  # 0代表剪刀scissors , 1代表石头rock ,2 代表布 paper
actions_print = ['剪刀', '石头', '布']
# 动作的收益 ,两个人进行博弈,结果
utility_matrix = np.array([
    [0, 1, -1],
    [-1, 0, 1],
    [1, -1, 0]
])

""" 游戏基本情况"""
# 玩家1 策略固定 [0.4,0.3,0.3]
# 玩家2,初始化策略为随机策略[1/3,1/3,1/3],的目的是通过CFR算法,学习得到一个能够获得最大收益的策略
# 整个游戏只有一个信息集,其中包含三个结点,在这个信息集合上可选的动作有3个

# 玩家,初始化
# 策略
player1_strategy = np.array([0.4, 0.3, 0.3])
player2_strategy = np.array([1 / 3, 1 / 3, 1 / 3])
# 玩家2在信息集I上关于三个动作的累计的遗憾值
player2_regret_Information = np.zeros(NUM_ACTIONS)
# 玩家2在信息集I上关于三个动作的累计的平均策略
player2_average_strategy = np.zeros(NUM_ACTIONS)



def RegretToStrategy(regret):
    """
    使用遗憾值匹配算法 ,根据累计的遗憾值,来确定新的策略

    :return:  新的策略 strategy
    """
    # 归一化方法: 1 只看遗憾值大于0的部分,然后计算分布
    regret_normalisation = np.clip(regret, a_min=0, a_max=None)
    #print(f'归一化后的累计遗憾值     {regret_normalisation[0]};      {regret_normalisation[1]};         {regret_normalisation[2]} ')
    """根据归一化后的遗憾值产生新的策略"""
    regret_normalisation_sum = np.sum(regret_normalisation)  # 求和

    strategy = np.zeros( NUM_ACTIONS)
    if regret_normalisation_sum > 0:
        strategy = regret_normalisation / regret_normalisation_sum
    else:
        strategy = np.array([1 / 3, 1 / 3, 1 / 3])  # 否则就采取平均策略

    return strategy

def UpdateAverage(strategy , average_strategy ,count ):
    """
    根据本次计算出来的策略,更新平均策略
    进行历史累计,然后对迭代次数进行平均
    :param strategy:
    :param average_strategy:
    :return:
    """
    average_strategy_new = np.zeros( NUM_ACTIONS)

    #不管玩家p2选择哪个动作,信息集I 的出现概率为 1
    for i in range(NUM_ACTIONS):
        average_strategy_new[i] =  (count -1) / count * average_strategy[i] + 1/count * 1 * strategy[i]

    return average_strategy_new


def StrategyToValues(strategy):
    """
    计算反事实收益值 v
    :param strategy:
    :return:
    """
    #首先计算信息集I上所有动作的反事实收益 ,见第三节算例

    #计算每个动作的反事实收益
    counterfactual_value_action = np.zeros(NUM_ACTIONS)
    for  i in  range(NUM_ACTIONS) :

        counterfactual_h1 = player1_strategy[0] * 1 * utility_matrix[0][i]
        counterfactual_h2 = player1_strategy[1] * 1 * utility_matrix[1][i]
        counterfactual_h3 = player1_strategy[2] * 1 * utility_matrix[2][i]

        counterfactual_value_action[i] = counterfactual_h1 + counterfactual_h2 +counterfactual_h3


    return counterfactual_value_action


def UpdateRegret( regret , strategy , counterfactual_value_action):
    """
    更新累计反事实遗憾

    :param regret:
    :param strategy:
    :param counterfactual_value_action:
    :return:
    """

    # 每个动作的反事实值 乘以 策略(每一个动作的概率) 求和 得到 期望
    counterfactual_value_expect  = np.sum(counterfactual_value_action * strategy)

    for i  in range(NUM_ACTIONS):
        regret[i] = regret[i] +   counterfactual_value_action[i] - counterfactual_value_expect

    return  regret


def NormaliseAverage(average_strategy):
    """
    归一化得到最后结果

    :param average_strategy:
    :return:
    """
    strategy_sum = sum(average_strategy)
    strategy = np.zeros(NUM_ACTIONS)
    for i in range( NUM_ACTIONS):

        strategy[i] = average_strategy[i] / strategy_sum

    return   strategy


#使用CFR求
for count in range(10):
    print(f'玩家2 当前策略 :{player2_strategy}')
    #2 根据当前策略,更新平均策略
    player2_average_strategy = UpdateAverage(player2_strategy , player2_average_strategy ,count+1 )
    print(f'累计平均策略 :{player2_average_strategy}')
    # 3 根据当前策略计算反事实收益
    player2_counterfactual_value_action = StrategyToValues(player2_strategy)
    print(f'当前策略对应的反事实收益 :{player2_counterfactual_value_action}')
    #4 更新累计反事实遗憾
    player2_regret_Information = UpdateRegret(player2_regret_Information, player2_strategy, player2_counterfactual_value_action)
    print(f'累计反事实遗憾 :{player2_regret_Information}')
    # 1 用遗憾值匹配算法 ,根据累计的遗憾值,来确定新的策略
    player2_strategy = RegretToStrategy(player2_regret_Information)
    print(f'-------------迭代次数{count+1}------------')

result = NormaliseAverage(player2_average_strategy)
print(f'最终结果:{result}')
posted @ 2022-12-06 15:28  英飞  阅读(1170)  评论(0编辑  收藏  举报