RocketMQ(4.8.0)——消费方式

消费方式

  RocketMQ 包含2种消费方式:

    • Pull
    • Push

  Pull方式:用户主动Pull消息,自主管理位点。默认的 Pull 消费者实现类:D:\rocketmq-master\client\src\main\java\org\apache\rocketmq\client\consumer\DefaultMQPullConsumer.java

    优点:可以灵活地掌控消费进度和消费速度,适合流计算、消费特别耗时等特殊的消费场景。

    缺点:需要从代码层面精准地控制消费,对开发人员有一定要求。

  Push方式:消息中间件主动推送给用户,可以尽可能实时地将消息发送给消费者进行消费。但是,在消费者的处理消息的能力较弱的时候,消费者端的缓冲区可能会溢出,导致异常。默认的 Push 消费者实现类:D:\rocketmq-master\client\src\main\java\org\apache\rocketmq\client\consumer\DefaultMQPushConsumer.java

    优点:代码接入非常简单,适合大部分业务场景。

    缺点:灵活度差,在了解其消费原理后,排查消费问题方可简单快捷。

  针对Pull和Push,下面对两种方式进行简单的比较。

消费方式/对比项 Pull Push 备注
是否需要主动拉取 理解分区后,需要主动拉取各个分区消息 自动 Pull 消息灵活,Push使用更简单
位点管理 用户自行管理或者主动提交给 Broker 管理 Broker 管理

Pull 自主管理位点,消费灵活;

Push 位点交由 Broker 管理

Topic 路由变更是否影响消费

Pull 模式需要编码实现路由感知;

Push 模式自动换行 Rebalance,以适应路由变更。

1.1 Pull消费流程

  D:\rocketmq-master\client\src\main\java\org\apache\rocketmq\client\consumer\DefaultMQPullConsumer.java 消费过程如下:

Pull消费的具体步骤:

  第一步:fetchSubscribeMessageQueue(String Topic)。拉取全部可以消费的 Queue。如果某一个 Broker 下线,这里也可以实时感知到。

  第二步:遍历全部Queue,拉取每个 Queue 可以消费的消息。

  第三步:如果拉取到消息,则执行用户编写的消费代码。

  第四步:保存消费进度。消费进度可以执行 updateConsumeOffset()方法,将消费位点上报给 Broker,也可以自行保存消费位点。比如流计算平台Flink使用Pull方式拉取消息消费,通过 Checkpoint 管理消费进度。

1.2 Push消费流程

Push消费过程如下:

  第一步:初始化 Push 消费者实例。业务代码初始化 DefaultMQPushConsumer 实例,启动 Pull 服务 PullMessageService。该服务是一个线程服务,不断执行 run() 方法拉取已经订阅 Topic 的全部队列消息,将消息保存在本地的缓存队列中。

  第二步:消费消息。由消息服务 ConsumeMessageConcurrentlyService 或者 ConsumeMessageOrderlyService 将本地缓存队列中的消息不断放入消费线程池,异步回调业务消费代码,此时业务代码可以消费消息。(核心知识点)

  第三步:保存消费进度。业务代码消费后,将消费结果返回给消费服务,再由消费服务将消费进度保存在本地,由消费进度管理服务定时和不定时地持久化到本地(LocalFileOffsetStore 支持)或者远程 Broker(RemoteBrokerOffsetStore支持)种。对于消费失败的消息,RocketMQ 客户端处理后发回给 Broker,并告知消费失败。(核心知识点)

Push消费者如何拉取消息消费:

  第一步:PullMessageService 不断拉取消息。

  第二步:消费者拉取消息并消费。

    2.1 基本校验。校验 ProcessQueue 是否dropped;校验消费者服务状态是否正常;校验消费者是否被挂起。

    2.2 拉取条数、字节数限制检查。如果本地缓存消息数量大于配置的最大拉取条数(默认为 1000,可以调整),则延迟一段时间再拉取;如果本地缓存消息字节数大于配置的最大缓存字节数,则延迟一段时间再拉取。这两种校验方式都相当于本地流控。

    2.3 并发消费和顺序消费校验。

      在并发消费时,processQueue.getMaxSpan()方法是用于计算本地缓存队列中第一个消息和最后一个消息的 offset 差值。

      本地缓存队列的 Span 如果大于配置的最大差值(默认为2000,可以调整),则认为本地消费过慢,需要执行本地流控。

      顺序消费时,如果当前拉取的队列在 Broker 端没有被锁定,说明已经有拉取正在执行,当前拉取请求晚点执行;如果不是第一次拉取,需要先计算最新的拉取位点并修正本地最新的待拉取位点信息,再执行拉取。代码路径:D:\rocketmq-master\client\src\main\java\org\apache\rocketmq\client\impl\consumer\DefaultMQPushConsumerImpl.java

 1         if (!this.consumeOrderly) {
 2             if (processQueue.getMaxSpan() > this.defaultMQPushConsumer.getConsumeConcurrentlyMaxSpan()) {
 3                 this.executePullRequestLater(pullRequest, PULL_TIME_DELAY_MILLS_WHEN_FLOW_CONTROL);
 4                 if ((queueMaxSpanFlowControlTimes++ % 1000) == 0) {
 5                     log.warn(
 6                         "the queue's messages, span too long, so do flow control, minOffset={}, maxOffset={}, maxSpan={}, pullRequest={}, flowControlTimes={}",
 7                         processQueue.getMsgTreeMap().firstKey(), processQueue.getMsgTreeMap().lastKey(), processQueue.getMaxSpan(),
 8                         pullRequest, queueMaxSpanFlowControlTimes);
 9                 }
10                 return;
11             }
12         } else {
13             if (processQueue.isLocked()) {
14                 if (!pullRequest.isLockedFirst()) {
15                     final long offset = this.rebalanceImpl.computePullFromWhere(pullRequest.getMessageQueue());
16                     boolean brokerBusy = offset < pullRequest.getNextOffset();
17                     log.info("the first time to pull message, so fix offset from broker. pullRequest: {} NewOffset: {} brokerBusy: {}",
18                         pullRequest, offset, brokerBusy);
19                     if (brokerBusy) {
20                         log.info("[NOTIFYME]the first time to pull message, but pull request offset larger than broker consume offset. pullRequest: {} NewOffset: {}",
21                             pullRequest, offset);
22                     }
23 
24                     pullRequest.setLockedFirst(true);
25                     pullRequest.setNextOffset(offset);
26                 }
27             } else {
28                 this.executePullRequestLater(pullRequest, pullTimeDelayMillsWhenException);
29                 log.info("pull message later because not locked in broker, {}", pullRequest);
30                 return;
31             }
32         }
View Code

  (1) 订阅关系校验。如果待拉取的 Topic 在本地缓存中订阅关系为空,则本地拉取不执行,待下一个正常心跳或者 Rebalance 后订阅关系恢复正常,方可正常拉取。

  (2) 封装拉取请求和拉取后的回调对象 PullCallback。这里主要将消息拉取请求和拉取结果处理封装成 PullCallback,并通过调用 PullAPIWrapper.pullKernelImpl() 方法拉取请求发出。

  拉取结果存在多种可能性。这里以拉取消息的情况举例说下:

 1                                 boolean dispatchToConsume = processQueue.putMessage(pullResult.getMsgFoundList());
 2                                 DefaultMQPushConsumerImpl.this.consumeMessageService.submitConsumeRequest(
 3                                     pullResult.getMsgFoundList(),
 4                                     processQueue,
 5                                     pullRequest.getMessageQueue(),
 6                                     dispatchToConsume);
 7 
 8                                 if (DefaultMQPushConsumerImpl.this.defaultMQPushConsumer.getPullInterval() > 0) {
 9                                     DefaultMQPushConsumerImpl.this.executePullRequestLater(pullRequest,
10                                         DefaultMQPushConsumerImpl.this.defaultMQPushConsumer.getPullInterval());
11                                 } else {
12                                     DefaultMQPushConsumerImpl.this.executePullRequestImmediately(pullRequest);
13                                 }
14                             }
15 
16                             if (pullResult.getNextBeginOffset() < prevRequestOffset
17                                 || firstMsgOffset < prevRequestOffset) {
18                                 log.warn(
19                                     "[BUG] pull message result maybe data wrong, nextBeginOffset: {} firstMsgOffset: {} prevRequestOffset: {}",
20                                     pullResult.getNextBeginOffset(),
21                                     firstMsgOffset,
22                                     prevRequestOffset);
23                             }
24 
25                             break;
View Code

  如果拉取到消息,那么将消息保存到对应的本地缓存队列 ProcessQueue 中,然后将这些消息提交给 ConsumeMessageService 服务。

  ConsumeMessageService 是一个通用消费服务接口,它包含两个实现类:org\apache\rocketmq\client\impl\consumer\ConsumeMessageConcurrentlyService 和 src\main\java\org\apache\rocketmq\client\impl\consumer\ConsumeMessageOrderlyService,这两个类分别用于并发消费和顺序消费。

 1 /*
 2  * Licensed to the Apache Software Foundation (ASF) under one or more
 3  * contributor license agreements.  See the NOTICE file distributed with
 4  * this work for additional information regarding copyright ownership.
 5  * The ASF licenses this file to You under the Apache License, Version 2.0
 6  * (the "License"); you may not use this file except in compliance with
 7  * the License.  You may obtain a copy of the License at
 8  *
 9  *     http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 package org.apache.rocketmq.client.impl.consumer;
18 
19 import java.util.List;
20 import org.apache.rocketmq.common.message.MessageExt;
21 import org.apache.rocketmq.common.message.MessageQueue;
22 import org.apache.rocketmq.common.protocol.body.ConsumeMessageDirectlyResult;
23 
24 public interface ConsumeMessageService {
25     void start();
26 
27     void shutdown(long awaitTerminateMillis);
28 
29     void updateCorePoolSize(int corePoolSize);
30 
31     void incCorePoolSize();
32 
33     void decCorePoolSize();
34 
35     int getCorePoolSize();
36 
37     ConsumeMessageDirectlyResult consumeMessageDirectly(final MessageExt msg, final String brokerName);
38 
39     void submitConsumeRequest(
40         final List<MessageExt> msgs,
41         final ProcessQueue processQueue,
42         final MessageQueue messageQueue,
43         final boolean dispathToConsume);
44 }
ConsumeMessageService{}

  start()方法  shutdown()方法 分别在启动和关闭服务时使用。

  updateCorePoolSize():更新消费线程池的核心线程数。
  incCorePoolSize():增加一个消费线程池的核心线程数。

  decCorePoolSize():减少一个消费线程池的核心线程数。

  getCorePoolSize():获取消费线程池的核心线程数。

  consumeMessageDirectly():如果一个消息已经被消费过了,但是还想再消费一次,就需要实现这个方法。
  submitConsumeRequest():将消息封装成线程池任务,提交给消费服务,消费服务再将消息传递给业务消费进行处理。

  (1) ConsumeMessageService 消息消费分发。ConsumeMessageService 服务通过 DefaultMQPushConsumerImpl.this.consumeMessageService.submitConsumeRequest 接口接收消息消费任务后,将消息按照固定条数封装成多个 ConsumeRequest 任务对象,并发送到消费线程,等待分发给业务消费;ConsumeMessageOrderlyService 先将 Pull 的全部消息放在另外一个本地队列中,然后提交一个 ConsumeRequest 到消费线程池。

  (2) 消费消息。消费的主要逻辑在 ConsumeMessageService 接口的两个实现类中。下面以并发消息实现类 org\apache\rocketmq\client\impl\consumer\ConsumeMessageConcurrentlyService,代码如下:

 1         @Override
 2         public void run() {
 3             if (this.processQueue.isDropped()) {
 4                 log.info("the message queue not be able to consume, because it's dropped. group={} {}", ConsumeMessageConcurrentlyService.this.consumerGroup, this.messageQueue);
 5                 return;
 6             }
 7 
 8             MessageListenerConcurrently listener = ConsumeMessageConcurrentlyService.this.messageListener;
 9             ConsumeConcurrentlyContext context = new ConsumeConcurrentlyContext(messageQueue);
10             ConsumeConcurrentlyStatus status = null;
11             defaultMQPushConsumerImpl.resetRetryAndNamespace(msgs, defaultMQPushConsumer.getConsumerGroup());
12 
13             ConsumeMessageContext consumeMessageContext = null;
14             //消费前
15             if (ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.hasHook()) {
16                 consumeMessageContext = new ConsumeMessageContext();
17                 consumeMessageContext.setNamespace(defaultMQPushConsumer.getNamespace());
18                 consumeMessageContext.setConsumerGroup(defaultMQPushConsumer.getConsumerGroup());
19                 consumeMessageContext.setProps(new HashMap<String, String>());
20                 consumeMessageContext.setMq(messageQueue);
21                 consumeMessageContext.setMsgList(msgs);
22                 consumeMessageContext.setSuccess(false);
23                 ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.executeHookBefore(consumeMessageContext);
24             }
25 
26             long beginTimestamp = System.currentTimeMillis();
27             boolean hasException = false;
28             ConsumeReturnType returnType = ConsumeReturnType.SUCCESS;
29             try {
30                 //预处理重试队列消息
31                 if (msgs != null && !msgs.isEmpty()) {
32                     for (MessageExt msg : msgs) {
33                         MessageAccessor.setConsumeStartTimeStamp(msg, String.valueOf(System.currentTimeMillis()));
34                     }
35                 }
36                 //消费回调
37                 status = listener.consumeMessage(Collections.unmodifiableList(msgs), context);
38             } catch (Throwable e) {
39                 log.warn("consumeMessage exception: {} Group: {} Msgs: {} MQ: {}",
40                     RemotingHelper.exceptionSimpleDesc(e),
41                     ConsumeMessageConcurrentlyService.this.consumerGroup,
42                     msgs,
43                     messageQueue);
44                 hasException = true;
45             }
46             long consumeRT = System.currentTimeMillis() - beginTimestamp;
47             if (null == status) {
48                 if (hasException) {
49                     returnType = ConsumeReturnType.EXCEPTION;
50                 } else {
51                     returnType = ConsumeReturnType.RETURNNULL;
52                 }
53             } else if (consumeRT >= defaultMQPushConsumer.getConsumeTimeout() * 60 * 1000) {
54                 returnType = ConsumeReturnType.TIME_OUT;
55             } else if (ConsumeConcurrentlyStatus.RECONSUME_LATER == status) {
56                 returnType = ConsumeReturnType.FAILED;
57             } else if (ConsumeConcurrentlyStatus.CONSUME_SUCCESS == status) {
58                 returnType = ConsumeReturnType.SUCCESS;
59             }
60             //消费执行后
61             if (ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.hasHook()) {
62                 consumeMessageContext.getProps().put(MixAll.CONSUME_CONTEXT_TYPE, returnType.name());
63             }
64 
65             if (null == status) {
66                 log.warn("consumeMessage return null, Group: {} Msgs: {} MQ: {}",
67                     ConsumeMessageConcurrentlyService.this.consumerGroup,
68                     msgs,
69                     messageQueue);
70                 status = ConsumeConcurrentlyStatus.RECONSUME_LATER;
71             }
72 
73             if (ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.hasHook()) {
74                 consumeMessageContext.setStatus(status.toString());
75                 consumeMessageContext.setSuccess(ConsumeConcurrentlyStatus.CONSUME_SUCCESS == status);
76                 ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.executeHookAfter(consumeMessageContext);
77             }
78 
79             ConsumeMessageConcurrentlyService.this.getConsumerStatsManager()
80                 .incConsumeRT(ConsumeMessageConcurrentlyService.this.consumerGroup, messageQueue.getTopic(), consumeRT);
81 
82             if (!processQueue.isDropped()) {
83                 //处理消费结果
84                 ConsumeMessageConcurrentlyService.this.processConsumeResult(status, context, this);
85             } else {
86                 log.warn("processQueue is dropped without process consume result. messageQueue={}, msgs={}", messageQueue, msgs);
87             }
88         }
89 
90         public MessageQueue getMessageQueue() {
91             return messageQueue;
92         }
93 
94     }
95 }
View Code

  消费消息主要分为 消费前预处理消费回调消费结果统计消费结果 处理 4 个步骤。

  第一步: 消费执行前进行预处理。执行消费前的 hook 和重试消息预处理。消费前的 hook 可以理解为消费前的消息预处理(比如消息格式校验)。如果拉取的消息来自重试队列,则将 Topic 名重置为原来的 Topic 名,而不用重试 Topic 名。

  第二步:消费回调。首先设置消息开始消费时间为当前时间,再将消息列表转为不可修改的 List,然后通过 listener.consumeMessage(Collections.unmodifiableList(msgs), context) 方法将消息传递给用户编写的业务消费代码进行处理。

  第三步:消费结果统计和执行消费后的 hook。客户端原生支持基本消费指标统计,比如消费耗时;消费后的 hook 和消费前的 hook 要一一对应,用户可以用消费后的 hook 统计与自身业务相关的指标。

  第四步:消费结果处理。包含消费指标统计、消费重试处理和消费位点处理。消费指标主要是对消费成功和失败的 TPS 的统计;消费重试处理主要将消费重试次数加 1;消费位点处理主要根据消费结构更新消费位点记录。

  至此,Push 消费流程完毕。

  RocketMQ 是一个消息队列,FIFO(Fist In First Out,先进先出)规则如何在消费失败时保证消息的顺序执行呢?

  从消费任务实现类 ConsumeRequest 和本地缓存队列 ProcessQueue 的涉及来看主要差异。并发消息(无序消费)的消费请求对象实现类代码路径:D:\rocketmq-master\client\src\main\java\org\apache\rocketmq\client\impl\consumer\ConsumeMessageConcurrentlyService.java,代码如下:

  1    class ConsumeRequest implements Runnable {
  2         private final List<MessageExt> msgs;
  3         private final ProcessQueue processQueue;
  4         private final MessageQueue messageQueue;
  5 
  6         public ConsumeRequest(List<MessageExt> msgs, ProcessQueue processQueue, MessageQueue messageQueue) {
  7             this.msgs = msgs;
  8             this.processQueue = processQueue;
  9             this.messageQueue = messageQueue;
 10         }
 11 
 12         public List<MessageExt> getMsgs() {
 13             return msgs;
 14         }
 15 
 16         public ProcessQueue getProcessQueue() {
 17             return processQueue;
 18         }
 19 
 20         @Override
 21         public void run() {
 22             if (this.processQueue.isDropped()) {
 23                 log.info("the message queue not be able to consume, because it's dropped. group={} {}", ConsumeMessageConcurrentlyService.this.consumerGroup, this.messageQueue);
 24                 return;
 25             }
 26 
 27             MessageListenerConcurrently listener = ConsumeMessageConcurrentlyService.this.messageListener;
 28             ConsumeConcurrentlyContext context = new ConsumeConcurrentlyContext(messageQueue);
 29             ConsumeConcurrentlyStatus status = null;
 30             defaultMQPushConsumerImpl.resetRetryAndNamespace(msgs, defaultMQPushConsumer.getConsumerGroup());
 31 
 32             ConsumeMessageContext consumeMessageContext = null;
 33             //消费前
 34             if (ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.hasHook()) {
 35                 consumeMessageContext = new ConsumeMessageContext();
 36                 consumeMessageContext.setNamespace(defaultMQPushConsumer.getNamespace());
 37                 consumeMessageContext.setConsumerGroup(defaultMQPushConsumer.getConsumerGroup());
 38                 consumeMessageContext.setProps(new HashMap<String, String>());
 39                 consumeMessageContext.setMq(messageQueue);
 40                 consumeMessageContext.setMsgList(msgs);
 41                 consumeMessageContext.setSuccess(false);
 42                 ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.executeHookBefore(consumeMessageContext);
 43             }
 44 
 45             long beginTimestamp = System.currentTimeMillis();
 46             boolean hasException = false;
 47             ConsumeReturnType returnType = ConsumeReturnType.SUCCESS;
 48             try {
 49                 //预处理重试队列消息
 50                 if (msgs != null && !msgs.isEmpty()) {
 51                     for (MessageExt msg : msgs) {
 52                         MessageAccessor.setConsumeStartTimeStamp(msg, String.valueOf(System.currentTimeMillis()));
 53                     }
 54                 }
 55                 //消费回调
 56                 status = listener.consumeMessage(Collections.unmodifiableList(msgs), context);
 57             } catch (Throwable e) {
 58                 log.warn("consumeMessage exception: {} Group: {} Msgs: {} MQ: {}",
 59                     RemotingHelper.exceptionSimpleDesc(e),
 60                     ConsumeMessageConcurrentlyService.this.consumerGroup,
 61                     msgs,
 62                     messageQueue);
 63                 hasException = true;
 64             }
 65             long consumeRT = System.currentTimeMillis() - beginTimestamp;
 66             if (null == status) {
 67                 if (hasException) {
 68                     returnType = ConsumeReturnType.EXCEPTION;
 69                 } else {
 70                     returnType = ConsumeReturnType.RETURNNULL;
 71                 }
 72             } else if (consumeRT >= defaultMQPushConsumer.getConsumeTimeout() * 60 * 1000) {
 73                 returnType = ConsumeReturnType.TIME_OUT;
 74             } else if (ConsumeConcurrentlyStatus.RECONSUME_LATER == status) {
 75                 returnType = ConsumeReturnType.FAILED;
 76             } else if (ConsumeConcurrentlyStatus.CONSUME_SUCCESS == status) {
 77                 returnType = ConsumeReturnType.SUCCESS;
 78             }
 79             //消费执行后
 80             if (ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.hasHook()) {
 81                 consumeMessageContext.getProps().put(MixAll.CONSUME_CONTEXT_TYPE, returnType.name());
 82             }
 83 
 84             if (null == status) {
 85                 log.warn("consumeMessage return null, Group: {} Msgs: {} MQ: {}",
 86                     ConsumeMessageConcurrentlyService.this.consumerGroup,
 87                     msgs,
 88                     messageQueue);
 89                 status = ConsumeConcurrentlyStatus.RECONSUME_LATER;
 90             }
 91 
 92             if (ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.hasHook()) {
 93                 consumeMessageContext.setStatus(status.toString());
 94                 consumeMessageContext.setSuccess(ConsumeConcurrentlyStatus.CONSUME_SUCCESS == status);
 95                 ConsumeMessageConcurrentlyService.this.defaultMQPushConsumerImpl.executeHookAfter(consumeMessageContext);
 96             }
 97 
 98             ConsumeMessageConcurrentlyService.this.getConsumerStatsManager()
 99                 .incConsumeRT(ConsumeMessageConcurrentlyService.this.consumerGroup, messageQueue.getTopic(), consumeRT);
100 
101             if (!processQueue.isDropped()) {
102                 //处理消费结果
103                 ConsumeMessageConcurrentlyService.this.processConsumeResult(status, context, this);
104             } else {
105                 log.warn("processQueue is dropped without process consume result. messageQueue={}, msgs={}", messageQueue, msgs);
106             }
107         }
108 
109         public MessageQueue getMessageQueue() {
110             return messageQueue;
111         }
112 
113     }
ConsumeRequest()

  顺序消费的消费请求对象实现类为 D:\rocketmq-master\client\src\main\java\org\apache\rocketmq\client\impl\consumer\ConsumeMessageConcurrentlyService.ConsumeRequest,代码如下:

  1 class ConsumeRequest implements Runnable {
  2         private final ProcessQueue processQueue;
  3         private final MessageQueue messageQueue;
  4 
  5         public ConsumeRequest(ProcessQueue processQueue, MessageQueue messageQueue) {
  6             this.processQueue = processQueue;
  7             this.messageQueue = messageQueue;
  8         }
  9 
 10         public ProcessQueue getProcessQueue() {
 11             return processQueue;
 12         }
 13 
 14         public MessageQueue getMessageQueue() {
 15             return messageQueue;
 16         }
 17 
 18         @Override
 19         public void run() {
 20             if (this.processQueue.isDropped()) {
 21                 log.warn("run, the message queue not be able to consume, because it's dropped. {}", this.messageQueue);
 22                 return;
 23             }
 24 
 25             final Object objLock = messageQueueLock.fetchLockObject(this.messageQueue);
 26             synchronized (objLock) {
 27                 if (MessageModel.BROADCASTING.equals(ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.messageModel())
 28                     || (this.processQueue.isLocked() && !this.processQueue.isLockExpired())) {
 29                     final long beginTime = System.currentTimeMillis();
 30                     for (boolean continueConsume = true; continueConsume; ) {
 31                         if (this.processQueue.isDropped()) {
 32                             log.warn("the message queue not be able to consume, because it's dropped. {}", this.messageQueue);
 33                             break;
 34                         }
 35 
 36                         if (MessageModel.CLUSTERING.equals(ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.messageModel())
 37                             && !this.processQueue.isLocked()) {
 38                             log.warn("the message queue not locked, so consume later, {}", this.messageQueue);
 39                             ConsumeMessageOrderlyService.this.tryLockLaterAndReconsume(this.messageQueue, this.processQueue, 10);
 40                             break;
 41                         }
 42 
 43                         if (MessageModel.CLUSTERING.equals(ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.messageModel())
 44                             && this.processQueue.isLockExpired()) {
 45                             log.warn("the message queue lock expired, so consume later, {}", this.messageQueue);
 46                             ConsumeMessageOrderlyService.this.tryLockLaterAndReconsume(this.messageQueue, this.processQueue, 10);
 47                             break;
 48                         }
 49 
 50                         long interval = System.currentTimeMillis() - beginTime;
 51                         if (interval > MAX_TIME_CONSUME_CONTINUOUSLY) {
 52                             ConsumeMessageOrderlyService.this.submitConsumeRequestLater(processQueue, messageQueue, 10);
 53                             break;
 54                         }
 55 
 56                         final int consumeBatchSize =
 57                             ConsumeMessageOrderlyService.this.defaultMQPushConsumer.getConsumeMessageBatchMaxSize();
 58 
 59                         List<MessageExt> msgs = this.processQueue.takeMessages(consumeBatchSize);
 60                         defaultMQPushConsumerImpl.resetRetryAndNamespace(msgs, defaultMQPushConsumer.getConsumerGroup());
 61                         if (!msgs.isEmpty()) {
 62                             final ConsumeOrderlyContext context = new ConsumeOrderlyContext(this.messageQueue);
 63 
 64                             ConsumeOrderlyStatus status = null;
 65 
 66                             ConsumeMessageContext consumeMessageContext = null;
 67                             if (ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.hasHook()) {
 68                                 consumeMessageContext = new ConsumeMessageContext();
 69                                 consumeMessageContext
 70                                     .setConsumerGroup(ConsumeMessageOrderlyService.this.defaultMQPushConsumer.getConsumerGroup());
 71                                 consumeMessageContext.setNamespace(defaultMQPushConsumer.getNamespace());
 72                                 consumeMessageContext.setMq(messageQueue);
 73                                 consumeMessageContext.setMsgList(msgs);
 74                                 consumeMessageContext.setSuccess(false);
 75                                 // init the consume context type
 76                                 consumeMessageContext.setProps(new HashMap<String, String>());
 77                                 ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.executeHookBefore(consumeMessageContext);
 78                             }
 79 
 80                             long beginTimestamp = System.currentTimeMillis();
 81                             ConsumeReturnType returnType = ConsumeReturnType.SUCCESS;
 82                             boolean hasException = false;
 83                             try {
 84                                 this.processQueue.getLockConsume().lock();
 85                                 if (this.processQueue.isDropped()) {
 86                                     log.warn("consumeMessage, the message queue not be able to consume, because it's dropped. {}",
 87                                         this.messageQueue);
 88                                     break;
 89                                 }
 90 
 91                                 status = messageListener.consumeMessage(Collections.unmodifiableList(msgs), context);
 92                             } catch (Throwable e) {
 93                                 log.warn("consumeMessage exception: {} Group: {} Msgs: {} MQ: {}",
 94                                     RemotingHelper.exceptionSimpleDesc(e),
 95                                     ConsumeMessageOrderlyService.this.consumerGroup,
 96                                     msgs,
 97                                     messageQueue);
 98                                 hasException = true;
 99                             } finally {
100                                 this.processQueue.getLockConsume().unlock();
101                             }
102 
103                             if (null == status
104                                 || ConsumeOrderlyStatus.ROLLBACK == status
105                                 || ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT == status) {
106                                 log.warn("consumeMessage Orderly return not OK, Group: {} Msgs: {} MQ: {}",
107                                     ConsumeMessageOrderlyService.this.consumerGroup,
108                                     msgs,
109                                     messageQueue);
110                             }
111 
112                             long consumeRT = System.currentTimeMillis() - beginTimestamp;
113                             if (null == status) {
114                                 if (hasException) {
115                                     returnType = ConsumeReturnType.EXCEPTION;
116                                 } else {
117                                     returnType = ConsumeReturnType.RETURNNULL;
118                                 }
119                             } else if (consumeRT >= defaultMQPushConsumer.getConsumeTimeout() * 60 * 1000) {
120                                 returnType = ConsumeReturnType.TIME_OUT;
121                             } else if (ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT == status) {
122                                 returnType = ConsumeReturnType.FAILED;
123                             } else if (ConsumeOrderlyStatus.SUCCESS == status) {
124                                 returnType = ConsumeReturnType.SUCCESS;
125                             }
126 
127                             if (ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.hasHook()) {
128                                 consumeMessageContext.getProps().put(MixAll.CONSUME_CONTEXT_TYPE, returnType.name());
129                             }
130 
131                             if (null == status) {
132                                 status = ConsumeOrderlyStatus.SUSPEND_CURRENT_QUEUE_A_MOMENT;
133                             }
134 
135                             if (ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.hasHook()) {
136                                 consumeMessageContext.setStatus(status.toString());
137                                 consumeMessageContext
138                                     .setSuccess(ConsumeOrderlyStatus.SUCCESS == status || ConsumeOrderlyStatus.COMMIT == status);
139                                 ConsumeMessageOrderlyService.this.defaultMQPushConsumerImpl.executeHookAfter(consumeMessageContext);
140                             }
141 
142                             ConsumeMessageOrderlyService.this.getConsumerStatsManager()
143                                 .incConsumeRT(ConsumeMessageOrderlyService.this.consumerGroup, messageQueue.getTopic(), consumeRT);
144 
145                             continueConsume = ConsumeMessageOrderlyService.this.processConsumeResult(msgs, status, context, this);
146                         } else {
147                             continueConsume = false;
148                         }
149                     }
150                 } else {
151                     if (this.processQueue.isDropped()) {
152                         log.warn("the message queue not be able to consume, because it's dropped. {}", this.messageQueue);
153                         return;
154                     }
155 
156                     ConsumeMessageOrderlyService.this.tryLockLaterAndReconsume(this.messageQueue, this.processQueue, 100);
157                 }
158             }
159         }
160 
161     }
View Code

  由上面代码可知,顺序消息的 ConsumeRequest 中并没有保存需要消费的消息,在顺序消费时通过调用 ProcessQueue.takeMessage() 方法获取需要消费的消息,而且消费也是同步进行的。

  msgTreeMap:是一个 TreeMap<Long,MessageExt>类型,key是消息物理位点值,value 是消息对象,该容器是 ProcessQueue 用来缓存本地顺序消息的,保存的数据是按照key(就是物理位点值)顺序排列的。

  consumingMsgOrderlyTreeMap:是一个TreeMap<Long,MessageExt>类型,key是消息物理位点值,value 是消息对象,保存当前正在处理的顺序消息集合,是 msgTreeMap 的一个子集。保存的数据是按照 key(就是物理机位点值)顺序排列的。

  batchSize:一次从本地缓存中获取多少条消息回调给用户消费。顺序消费是如何通过 PorcessQueue.takeMessage() 获取消息给业务代码消费的呢?

 1     public List<MessageExt> takeMessages(final int batchSize) {
 2         List<MessageExt> result = new ArrayList<MessageExt>(batchSize);
 3         final long now = System.currentTimeMillis();
 4         try {
 5             this.lockTreeMap.writeLock().lockInterruptibly();
 6             this.lastConsumeTimestamp = now;
 7             try {
 8                 if (!this.msgTreeMap.isEmpty()) {
 9                     for (int i = 0; i < batchSize; i++) {
10                         Map.Entry<Long, MessageExt> entry = this.msgTreeMap.pollFirstEntry();
11                         if (entry != null) {
12                             result.add(entry.getValue());
13                             consumingMsgOrderlyTreeMap.put(entry.getKey(), entry.getValue());
14                         } else {
15                             break;
16                         }
17                     }
18                 }
19 
20                 if (result.isEmpty()) {
21                     consuming = false;
22                 }
23             } finally {
24                 this.lockTreeMap.writeLock().unlock();
25             }
26         } catch (InterruptedException e) {
27             log.error("take Messages exception", e);
28         }
29 
30         return result;
31     }
takeMessages(final int batchSize)

  这段代码 msgTreeMap 中获取 batchSzie 数量的消息放入 consumingMsgOrderlyTreeMap 中,并返回给用户消费。由于当前的 MessageQueue 是被 synchronized 锁住的,并且获取的消费消息也是按照消费位点顺序排列的,所以消费时用户能按照物理位点顺序消费消息。

  如果消费失败,又是怎么保证顺序的呢?消费失败后的处理方法 ConsumeMessageOrderlyService.processConsumeResult() 的实现代码。

  RocketMQ 支持自动提交 offset 和手动提交 offset 两种方式。以下以自动提交 offset 为例,手动提交 offset 的逻辑与其完全一致。

  msgs:当前处理的一批消息。

  status:消费结果的状态。

  消费成功后,程序会执行 commit() 方法提交当前位点,统计消费成功的 TPS。

  消费失败后,程序会统计消费失败的 TPS,通过执行 makeMessageToConsumeAgain() 方法删除消费失败的消息,通过定时任务将消费失败的消息在延迟一段时间后,重新提交到消费线程。

  makeMessageToConsumeAgain()方法将消息 consumingMsgOrderlyTreeMap 中删除,再重新放入本地缓存队列 msgTreeMap 中,等待下次被重新消费。

 1     public void makeMessageToConsumeAgain(List<MessageExt> msgs) {
 2         try {
 3             this.lockTreeMap.writeLock().lockInterruptibly();
 4             try {
 5                 for (MessageExt msg : msgs) {
 6                     this.consumingMsgOrderlyTreeMap.remove(msg.getQueueOffset());
 7                     this.msgTreeMap.put(msg.getQueueOffset(), msg);
 8                 }
 9             } finally {
10                 this.lockTreeMap.writeLock().unlock();
11             }
12         } catch (InterruptedException e) {
13             log.error("makeMessageToCosumeAgain exception", e);
14         }
15     }
makeMessageToConsumeAgain()

  submitConsumeRequestLater() 方法会执行一个定时任务,延迟一定实践后重新将消息请求发送到消费线程池中,以供下一轮的消费。

 1     private void submitConsumeRequestLater(
 2         final ProcessQueue processQueue,
 3         final MessageQueue messageQueue,
 4         final long suspendTimeMillis
 5     ) {
 6         long timeMillis = suspendTimeMillis;
 7         if (timeMillis == -1) {
 8             timeMillis = this.defaultMQPushConsumer.getSuspendCurrentQueueTimeMillis();
 9         }
10 
11         if (timeMillis < 10) {
12             timeMillis = 10;
13         } else if (timeMillis > 30000) {
14             timeMillis = 30000;
15         }
16 
17         this.scheduledExecutorService.schedule(new Runnable() {
18 
19             @Override
20             public void run() {
21                 ConsumeMessageOrderlyService.this.submitConsumeRequest(null, processQueue, messageQueue, true);
22             }
23         }, timeMillis, TimeUnit.MILLISECONDS);
24     }
submitConsumeRequestLater()

  做完这两个操作后,我们试想一下,消费线程在下一次消费时会发生什么事情?如果是从 msgTreeMap 中获取一批消息,那么返回的消息又是哪些呢?消息物理位点最小的,也就是之前未成功消息的消息。如果顺序消息消费失败,会再次投递消费者消费,直到消费成功,以此来保证顺序性。

posted @ 2021-02-22 10:27  左扬  阅读(1145)  评论(0编辑  收藏  举报
levels of contents