pytorch--DataParallel与DistributedDataParallel

nn.DataParallel()

网络在前向传播的时候会将model从主卡(默认是逻辑0卡)复制一份到所有的device上,input_data会在batch这个维度被分组后upload到不同的device上计算。在反向传播时,每个卡上的梯度会汇总到主卡上,求得梯度的均值后,再用反向传播更新单个GPU上的模型参数,最后将更新后的模型参数复制到剩余指定的GPU中进行下一轮的前向传播,以此来实现并行。

DistributedDataParallel()

  • DDP通过多进程实现的。也就是说操作系统会为每个GPU创建一个进程,从而避免了Python解释器GIL带来的性能开销。而DataParallel()是通过单进程控制多线程来实现的。还有一点,DDP也不存在前面DP提到的负载不均衡问题。
  • 参数更新的方式不同。DDP在各进程梯度计算完成之后,各进程需要将梯度进行汇总平均,然后再由 rank=0 的进程,将其 broadcast 到所有进程后,各进程用该梯度来独立的更新参数而 DP是梯度汇总到GPU0,反向传播更新参数,再广播参数给其他剩余的GPU。由于DDP各进程中的模型,初始参数一致 (初始时刻进行一次 broadcast),而每次用于更新参数的梯度也一致,因此,各进程的模型参数始终保持一致。而在DP中,全程维护一个 optimizer,对各个GPU上梯度进行求平均,而在主卡进行参数更新,之后再将模型参数 broadcast 到其他GPU.相较于DP, DDP传输的数据量更少,因此速度更快,效率更高。
  • DDP支持 all-reduce(指汇总不同 GPU 计算所得的梯度,并同步计算结果),broadcast,send 和 receive 等等。通过 MPI 实现 CPU 通信,通过 NCCL 实现 GPU 通信,缓解了“写在前面“提到的进程间通信有大的开销问题。
posted @ 2021-05-27 15:06  鲍曼小学生  阅读(265)  评论(0编辑  收藏  举报