HDU1599(Floyd最小环)
Floyd最小环理解+模板:
https://www.cnblogs.com/DF-yimeng/p/8858184.html
除了上述博文里写的,我再补充几点我的理解。
1.为什么先枚举ij求经过ijk的最小环再更新k?
因为更新了K点,dis[i][j]可能会经过K,那么再枚举ij求ijk可能会得到来回相同的路,那么就不是环了。
2.为什么需要两个数组?
一个数组dis[][]表示的是正常从u到v经过k的最短路,
另一个数组mp[][]表示的是不经过k的时候回来的时候的最短路。
通过mp[][]找与k相邻的两个点到k的距离,如下图的情况即找x2和x3到k的距离。通过dis[][]找到与k相邻两点之间的最短距离,如下图的情况即找x2->x3的最短距离。
x1->x2->k->x3->...->x9
HDU1599
https://vjudge.net/problem/HDU-1599
杭州有N个景区,景区之间有一些双向的路来连接,现在8600想找一条旅游路线,这个路线从A点出发并且最后回到A点,假设经过的路线为V1,V2,....VK,V1,那么必须满足K>2,就是说至除了出发点以外至少要经过2个其他不同的景区,而且不能重复经过同一个景区。现在8600需要你帮他找一条这样的路线,并且花费越少越好。
Input第一行是2个整数N和M(N <= 100, M <= 1000),代表景区的个数和道路的条数。
接下来的M行里,每行包括3个整数a,b,c.代表a和b之间有一条通路,并且需要花费c元(c <= 100)。Output对于每个测试实例,如果能找到这样一条路线的话,输出花费的最小值。如果找不到的话,输出"It's impossible.".Sample Input
3 3 1 2 1 2 3 1 1 3 1 3 3 1 2 1 1 2 3 2 3 1
Sample Output
3 It's impossible.
1 #include<bits/stdc++.h> 2 using namespace std; 3 const int inf=1e8; 4 const int maxn=105; 5 int dis[maxn][maxn];//表示的正常从u到v经过k的最短路 6 int mp[maxn][maxn];//表示的是不经过k的时候回来的时候的最短路 7 int n,m,u,v,w; 8 int i,j,k; 9 void floyd() 10 { 11 int minn=inf; 12 for(k=1;k<=n;k++) 13 { 14 for(i=1;i<k;i++) 15 for(j=i+1;j<k;j++) 16 minn=min(minn,dis[i][j]+mp[j][k]+mp[k][i]); 17 for(i=1;i<=n;i++) 18 for(j=1;j<=n;j++) 19 dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]); 20 } 21 if(minn==inf) 22 cout<<"It's impossible."<<endl; 23 else 24 cout<<minn<<endl; 25 } 26 int main() 27 { 28 while(~scanf("%d%d",&n,&m)) 29 { 30 for(i=0;i<=n;i++) 31 for(j=0;j<=n;j++) 32 mp[i][j]=dis[i][j]=inf; 33 //memset(mp,0x3f,sizeof mp); 34 for(i=1;i<=m;i++) 35 { 36 cin>>u>>v>>w; 37 mp[u][v]=mp[v][u]=dis[u][v]=dis[v][u]=min(w,mp[u][v]); 38 } 39 floyd(); 40 } 41 return 0; 42 }
思路:
floyd最小环的模板题。
注意点:
一开始把无穷值设为0x3f3f3f3f,WA了。把值改为1e8或者1e7(>1000(道路最大数)*100(站点最大数))就能AC,至今不明原因。(>人<;)