神经网络学习--PyTorch学习05 定义VGGNet网络

使用数据集猫狗大战

import time

import torch
import torchvision
from torchvision import datasets, transforms
import os
import matplotlib.pyplot as plt
from torch.autograd import Variable
os.environ["CUDA_VISIBLE_DEVICES"] = "0"  # 使用GPU 0
data_dir = "DogsVsCats"
# 设置数据格式
data_transform = {x: transforms.Compose([transforms.Scale([64, 64]),  # scale类将原始图缩放至64*64
                    transforms.ToTensor()])
                    for x in ["train", "valid"]}
# 加载数据
image_datasets = {x: datasets.ImageFolder(root=os.path.join(data_dir, x),
                            transform=data_transform[x])
                  for x in ["train", "valid"]}

# 数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。
# 在训练模型时使用到此函数,用来把训练数据分成多个小组,此函数每次抛出一组数据。直至把所有的数据都抛出。就是做一个数据的初始化。
dataloader = {x: torch.utils.data.DataLoader(dataset=image_datasets[x],
                                batch_size=16,
                                shuffle=True)
                                for x in ["train", "valid"]}

# 获取一个批次的装载数据  x_example(16,3,64,64) y_example 进行了独热编码,里面全为0和1
x_example, y_example = next(iter(dataloader["train"]))

# index_classes的 输出结果为{'cat':0,'dog',1}
index_classes = image_datasets["train"].class_to_idx

#将原始标签的结果存在example_clasees中 {'cat','dog'}
example_clasees = image_datasets["train"].classes

# 做成网格数据
img = torchvision.utils.make_grid(x_example)
img = img.numpy().transpose([1, 2, 0])  # 转换维度
# print([example_clasees[i] for i in y_example])
# plt.imshow(img)
# plt.show()

# VGGNet模型
class Models(torch.nn.Module):
    def __init__(self):
        super(Models,self).__init__()
        self.Conv = torch.nn.Sequential(
            torch.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(),
            torch.nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(kernel_size=2, stride=2),

            torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(),
            torch.nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(kernel_size=2, stride=2),

            torch.nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(),
            torch.nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(),
            torch.nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(kernel_size=2, stride=2),

            torch.nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(),
            torch.nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(),
            torch.nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(kernel_size=2, stride=2),
        )

        self.Classes = torch.nn.Sequential(
            torch.nn.Linear(4*4*512, 1024),
            torch.nn.ReLU(),
            torch.nn.Dropout(p=0.5),
            torch.nn.Linear(1024, 1024),
            torch.nn.Dropout(p=0.5),
            torch.nn.Linear(1024, 2)
        )

    def forward(self, input):
        x = self.Conv(input)
        x = x.view(-1, 4*4*512)
        x = self.Classes(x)
        return x


model = Models()
# print(model)

loss_f = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=0.00001)
Use_gpu = torch.cuda.is_available()  # 判断是否存在cuda
if Use_gpu:
    model = model.cuda()  # ***********************************************************
epoch_n = 10
time_open = time.time()

for epoch in range(epoch_n):
    print("Epoch{}/{}".format(epoch,epoch_n-1))
    print("-"*10)

    for phase in ["train", "valid"]:
        if phase == "train":
            print("Training...")
            model.train(True)
        else:
            print("Validing...")
            model.train(False)

        running_loss = 0.0
        running_corrects = 0
        for batch, data in enumerate(dataloader[phase], 1):  # enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,
            X, y = data
            if Use_gpu:
                X, y =Variable(X.cuda()),Variable(y.cuda())  # **************************************
            else:
                X, y = Variable(X), Variable(y)
            y_pred = model(X)  # 得到预测值
            _,pred =torch.max(y_pred,1)
            optimizer.zero_grad()  # 清空梯度
            loss = loss_f(y_pred, y)  # 定义损失函数

            if phase == "train":
                loss.backward()  # 如果是训练,进行反向传播
                optimizer.step()  # 更新各节点的参数
            running_loss += loss.item()
            running_corrects += torch.sum(pred == y.data)

            if batch%500 == 0 and phase == "train":
                print("Batch{},TrainLoss:{:.4f},Train ACC:{:.4f}".format(
                    batch,running_loss/batch, 100*running_corrects/(16*batch)))
        epocn_loss = running_loss*16/len(image_datasets[phase])
        epoch_acc = 100*running_corrects/len(image_datasets[phase])
        print("{} Loss:{:.4f} Acc:{:4f}%".format(phase, epocn_loss, epoch_acc))
time_end = time.time()-time_open
print(time_end)

 

posted @ 2019-09-10 19:58  键盘已坏  阅读(429)  评论(1编辑  收藏  举报