HDU 4965 Fast Matrix Calculation
按题意的步骤来显然是不行的。算一次最坏需要o(1000*1000*6)复杂度,需要算log(n*n)次,显然超时。
需要转换一下公式,考虑到K只有6,所以可以考虑转换成BA来做。
#include<cstdio> #include<cstring> #include<cmath> #include<vector> #include<algorithm> using namespace std; int N, M; const long long m = 6; struct Matrix { long long A[10][10]; int R, C; Matrix operator*(Matrix b); }; Matrix X, Y; long long A[1000 + 10][1000 + 10]; long long B[1000 + 10][1000 + 10]; long long ANS1[1000 + 10][1000 + 10]; long long ANS2[1000 + 10][1000 + 10]; Matrix Matrix::operator*(Matrix b) { Matrix c; int i, j, k; for (i = 1; i <= R; i++) for (j = 1; j <= b.C; j++){ c.A[i][j] = 0; for (k = 1; k <= C; k++) c.A[i][j] = (c.A[i][j] + (A[i][k] * b.A[k][j]) % m) % m; } c.R = R; c.C = b.C; return c; } void init() { memset(Y.A, 0, sizeof Y.A); for (int i = 1; i <= M; i++) Y.A[i][i] = 1; Y.R = M; Y.C = M; X.R = M; X.C = M; for (int i = 1; i <= M; i++) { for (int j = 1; j <= M; j++) { X.A[i][j] = 0; for (int k = 1; k <= N; k++) X.A[i][j] = (X.A[i][j] + (B[i][k] * A[k][j]) % m) % m; } } } void work() { int tmp = N*N - 1; while (tmp) { if (tmp % 2 == 1) Y = Y*X; tmp = tmp >> 1; X = X*X; } for (int i = 1; i <= N; i++) { for (int j = 1; j <= M; j++) { ANS1[i][j] = 0; for (int k = 1; k <= M; k++) ANS1[i][j] = (ANS1[i][j] + (A[i][k] * Y.A[k][j]) % m) % m; } } for (int i = 1; i <= N; i++) { for (int j = 1; j <= N; j++) { ANS2[i][j] = 0; for (int k = 1; k <= M; k++) ANS2[i][j] = (ANS2[i][j] + (ANS1[i][k] * B[k][j]) % m) % m; } } long long sum = 0; for (int i = 1; i <= N; i++) for (int j = 1; j <= N; j++) sum = sum + ANS2[i][j]; printf("%lld\n", sum); } void read() { for (int i = 1; i <= N; i++) for (int j = 1; j <= M; j++) scanf("%d", &A[i][j]); for (int i = 1; i <= M; i++) for (int j = 1; j <= N; j++) scanf("%d", &B[i][j]); } int main() { while (~scanf("%d%d", &N, &M)) { if (N == 0 && M == 0) break; read(); init(); work(); } return 0; }