HUST 1351 Group

(莫名其妙的被一个叫布布扣的网站收录了......什么鬼)

简单DP。dp[i][j]表示把前i个数字分成j段的最优解,

递推式很容易写:

(其中sum[]是前缀和;p <= i - L,并且前p个数能分成j-1段,下文不再说明p的范围,都是一样的)

得到递推式之后暴力DP的话复杂度为o(n*n*k),显然超时。

递推式可以变形成这样:

现在,想求得dp[i][j],只需求得,即前面所有P的位置的最小值。

然而,上面这式子可以递推得到:

令f[i][j]=

最终,得到了两个式子:

代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<iostream>
#include<algorithm>
#include<bitset>
#include<functional>
using namespace std;

const int maxn = 20000 + 10;
const int INF = 0x7fffffff;
int dp[maxn][100 + 10];
int f[maxn][100 + 10];
int a[maxn];
int sum[maxn];
int n, l, k;
int ans;

void read()
{
    scanf("%d%d%d", &n, &k, &l);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
}

void init()
{
    memset(sum, 0, sizeof sum);
    for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + a[i];
    ans = INF;
    for (int i = 0; i <= n; i++)
    for (int j = 0; j <= k; j++)
        dp[i][j] = INF, f[i][j] = INF;
}

void work()
{
    for (int i = l; i <= n; i++)
    {
        dp[i][1] = sum[i];
        f[i][1] = min(f[i - 1][1], dp[i][1] - (1 + 1)*sum[i]);
    }

    for (int i = 1; i <= n; i++)
    {
        for (int j = 2; j <= k; j++)
        {
            if (i - l <= 0) continue;
            if (f[i - l][j - 1] == INF) continue;
            dp[i][j] = j*sum[i] + f[i - l][j - 1];
            f[i][j] = min(f[i - 1][j], dp[i][j] - (j + 1)*sum[i]);
        } 
    }

    for (int j = 1; j <= k; j++) ans = min(ans, dp[n][j]);
    //for (int j = 1; j <= k; j++) printf("**** %d\n", dp[n][j]);
    printf("%d\n", ans);
}

int main()
{
    int T;
    scanf("%d", &T);
    while (T--)
    {
        read();
        init();
        work();
    }
    return 0;
}

 

posted @ 2016-02-17 10:57  Fighting_Heart  阅读(191)  评论(0编辑  收藏  举报