Live2D

code#5 P2 棋子

 

时间限制: 1.0 秒

空间限制: 512 MB

相关文件: 题目目录

题目描述

棋盘从左到右被分割成 n(n1000) 个格子,从左到右编号为1,2,...,n。棋盘上有 m(mn) 个棋子,编号为 1,2,...,m ,编号为i的棋子刚开始摆放在编号为 pi 的格子上,一个格子最多摆放一个棋子。每次操作小R可以选择一个棋子,将它移动到它右边第一个空着的格子中,如果它右边没有空着的格子了,那么这就是一个非法操作,执行一次非法操作不会对棋盘有任何改变。小R依次做了k次操作,如果一次操作是合法的,你需要输出这颗棋子移动到的格子的编号,如果是非法的,你需要输出"error!"。

输入格式

从标准输入读入数据。

第一行三个整数 nmk ,表示格子数、棋子数和操作数。

第二行 m 个正整数,第 i 个正整数表示 pi ,即第 i 个棋子的初始位置。

第三行 k 个正整数,第 i 个正整数表示 xi ,即第 i 次操作选定的棋子的编号。

输出格式

输出到标准输出。

输出 k 行,第i行表示第i次操作的结果。对于合法操作,输出棋子移动到的位置,对于非法操作,输出一行"error!"。

思路:

1000x10000暴力都能做,然而我看成了10000x10000

写了个超级麻烦的线段树

线段树怎么做呢?

首先,开一颗线段树

每个节点维护他的子树里面的0的个数

我们同时开一个映射数组

ys[i]表示当前编号为i的数在ys[i]这个位置

然后查询ys[i]~n这些位置的第一个0的位置

输出即可

如果一个没有

那就是不合法

合法的话更新线段树和映射数组即可

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<queue>
#include<cstdlib>
#include<algorithm>
#define rs 1024
#define rii register int i
#define rij register int j
using namespace std;
struct tree{
    int cnt,val,wz;
}x[5005];
int n,m,k,ys[1005];
void mem(int l,int r,int bh)
{
    x[bh].cnt=(r-l+1);
    if(l==r)
    {
        x[bh].wz=l;
        return;
    }
    int mid=(l+r)/2;
    mem(l,mid,bh*2);
    mem(mid+1,r,bh*2+1);
}
void add(int wz,int nl,int nr,int val,int bh)
{
    if(nl==wz&&nr==wz)
    {
        if(val==0)
        {
            x[bh].cnt=1;
        }
        else
        {
            x[bh].cnt=0;
        }
        return;
    }
    int mid=(nl+nr)/2;
    if(wz<=mid)
    {
        add(wz,nl,mid,val,bh*2);
    }
    else
    {
        add(wz,mid+1,nr,val,bh*2+1);
    }
    x[bh].cnt=x[bh*2].cnt+x[bh*2+1].cnt;
}
int query(int l,int r,int nl,int nr,int bh)
{
    if(l<nl)
    {
        l=nl;
    }
    if(r>nr)
    {
        r=nr;
    }
    if(l==nl&&nr==nl)
    {
        return x[bh].wz;
    }
    int re=0;
    int mid=(nl+nr)/2;
    if(l<=mid)
    {
        if(x[bh*2].cnt!=0)
        {
            re=query(l,r,nl,mid,bh*2);
        }
    }
    if(r>mid&&re==0)
    {
        if(x[bh*2+1].cnt!=0)
        {
            re=query(l,r,mid+1,nr,bh*2+1);
        }
    }
    return re;
}
int main()
{
//    freopen("1.in","r",stdin);
    scanf("%d%d%d",&n,&m,&k);
    mem(1,rs,1);
    for(rii=1;i<=m;i++)
    {
        int val;
        scanf("%d",&val);
        ys[i]=val;
        add(val,1,rs,i,1);
    }
    for(rii=1;i<=k;i++)
    {
        int bh;
        scanf("%d",&bh);
        int wz=ys[bh];
        if(wz+1>n)
        {
            puts("error!");
            continue;
        }
        int ltt=query(wz+1,n,1,rs,1);
        if(ltt==0)
        {
            puts("error!");
            continue;
        }
        else
        {
            printf("%d\n",ltt);
        }
        add(ltt,1,rs,bh,1);
        add(wz,1,rs,0,1);
        ys[bh]=ltt;
    }
}

 

posted @ 2018-11-03 20:18  ztz11  阅读(194)  评论(0编辑  收藏  举报