[题解] [SDOI2010] 大陆争霸
题面
题解
对于到某个点\(i\), 我们有两个条件
到达\(i\)点的最短时间, 用\(dis1_i\)表示
破坏完所有保护\(i\)点的城市的最小时间
两者取\(max\)即到\(i\)点的最小时间
对于破坏某个城市的保护点, 用类似于拓扑序的方式处理即可
Code
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#define itn int
#define reaD read
#define N 200005
using namespace std;
int n, m, in[N], dis1[N], dis2[N];
struct edge { int to, next, cost; };
struct dist { int num, dis; bool operator < (const dist &p) const { return dis > p.dis; } };
struct Graph
{
edge e[N << 1]; int head[N]; int cnt;
Graph() { cnt = 0; }
inline void adde(int u, int v, int w) { e[++cnt] = (edge) { v, head[u], w }; head[u] = cnt; }
} A, B;
bool vis[N];
namespace Heap
{
dist heap[N << 2]; int sz = 0;
void push(dist x) { heap[++sz] = x; push_heap(heap + 1, heap + sz + 1); }
void pop() { pop_heap(heap + 1, heap + sz + 1); sz--; }
dist top() { return heap[1]; }
bool empty() { return !sz; }
};
using namespace :: Heap;
inline int read()
{
int x = 0, w = 1; char c = getchar();
while(c < '0' || c > '9') { if (c == '-') w = -1; c = getchar(); }
while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
return x * w;
}
void dijkstra()
{
memset(dis1, 0x3f, sizeof(dis1));
memset(vis, 0, sizeof(vis));
dis1[1] = 0; push((dist) { 1, 0 });
while(!empty())
{
dist tmp = top(); int u = tmp.num; pop();
if(vis[u]) continue; vis[u] = 1;
for(int i = A.head[u]; i; i = A.e[i].next)
{
int v = A.e[i].to;
if(dis1[v] > tmp.dis + A.e[i].cost && !vis[v])
{
dis1[v] = tmp.dis + A.e[i].cost;
if(!in[v]) push((dist) { v, max(dis1[v], dis2[v]) });
}
}
for(int i = B.head[u]; i; i = B.e[i].next)
{
int v = B.e[i].to; in[v]--;
dis2[v] = max(dis2[v], tmp.dis);
if(!in[v]) push((dist) { v, max(dis1[v], dis2[v]) });
}
}
}
int main()
{
n = read(); m = read();
for(int i = 1; i <= m; i++)
{
int u = read(), v = read(), w = reaD();
A.adde(u, v, w);
}
for(int i = 1; i <= n; i++)
{
in[i] = reaD();
for(int j = 1; j <= in[i]; j++)
{
int x = read();
B.adde(x, i, 0);
}
}
dijkstra();
printf("%d\n", max(dis1[n], dis2[n]));
return 0;
}