(2) 深入理解SELinux SEAndroid(第二部分)


http://blog.csdn.net/innost/article/details/19641487


接第一部分的内容(http://blog.csdn.net/innost/article/details/19299937)。

今天公司年会,哥高兴,所以发布第二部。SELinux/SEAndroid一共分三部分。第一和第二部分是SELinux的基础知识,第三部分是SEAndroid的工作源码分析。

        深入理解SELinux SEAndroid 第二部分

3)  File/File System 打label

前面一节中,读者见识到了DTTT。不过这些描述的都是Transition,即从某种TypeDomain进入另外一种TypeDomain,而上述内容并没有介绍最初的Type怎么来。在SELinux中,对与File相关的死货(比“死东西”少些一个字)还有一些特殊的语句。

直接看SEAndroid中的文件吧。

[external/sepolicy/file_contexts]

#从file_contexts这个文件名也可看出,该文件描述了死货的SContext

#果然:SEAndroid多各种预先存在的文件,目录等都设置了初始的SContext

#注意下面这些*,?号,代表通配符

/dev(/.*)?        u:object_r:device:s0

/dev/akm8973.*        u:object_r:akm_device:s0

/dev/accelerometer    u:object_r:accelerometer_device:s0

/dev/alarm        u:object_r:alarm_device:s0

/dev/android_adb.*    u:object_r:adb_device:s0

/dev/ashmem        u:object_r:ashmem_device:s0

/dev/audio.*        u:object_r:audio_device:s0

/dev/binder        u:object_r:binder_device:s0

/dev/block(/.*)?    u:object_r:block_device:s0

......

#注意下面的--号,SELinux中类似的符号还有:

#‘-b’ - Block Device ‘-c’ - Character Device

#‘-d’ - Directory ‘-p’ - Named Pipe

#‘-l’ - Symbolic Link ‘-s’ - Socket

#‘--’ - Ordinary file

/system(/.*)?        u:object_r:system_file:s0

/system/bin/ash        u:object_r:shell_exec:s0

/system/bin/mksh    u:object_r:shell_exec:s0

/system/bin/sh        --    u:object_r:shell_exec:s0

/system/bin/run-as    --    u:object_r:runas_exec:s0

/system/bin/app_process    u:object_r:zygote_exec:s0

/system/bin/servicemanager    u:object_r:servicemanager_exec:s0

/system/bin/surfaceflinger    u:object_r:surfaceflinger_exec:s0

/system/bin/drmserver    u:object_r:drmserver_exec:s0

上面的内容很简单,下面来个面生的:

[external/sepolicy/fs_use]

#fs_use中的fs代表file system.fs_use文件描述了SELinux的labeling信息

#在不同文件系统时的处理方式

#对于常规的文件系统,SContext信息存储在文件节点(inode)的属性中,系统可通过getattr

#函数读取inode中的SContext信息。对于这种labeling方式,SELinux定义了

#fs_use_xattr关键词。这种SContext是永远性得保存在文件系统中

fs_use_xattr yaffs2 u:object_r:labeledfs:s0;

fs_use_xattr jffs2 u:object_r:labeledfs:s0;

fs_use_xattr ext2 u:object_r:labeledfs:s0;

fs_use_xattr ext3 u:object_r:labeledfs:s0;

fs_use_xattr ext4 u:object_r:labeledfs:s0;

fs_use_xattr xfs u:object_r:labeledfs:s0;

fs_use_xattr btrfs u:object_r:labeledfs:s0;

 

#对于虚拟文件系统,即Linux系统运行过程中创建的VFS,则使用fs_use_task关键字描述

#目前也仅有pipefssockfs两种VFS格式

fs_use_task pipefs u:object_r:pipefs:s0;

fs_use_task sockfs u:object_r:sockfs:s0;

 

#还没完,还有一个fs_use_trans,它也是用于Virtual File System,但根据SELinux官方

#描述,好像这些VFS是针对pseudo terminal和临时对象。在具体labeling的时候,会根据

#fs_use_trans以及TT的规则来来决定最终的SContext

#我们以下面这个例子为例:

fs_use_trans devpts u:object_r:devpts:s0;

#假设还有一条TT语句

#type_transition sysadm_t devpts : chr_file sysadm_devpts_t:s0;

#表示当sysadm_t的进程在Type为devpts下创建一个chr_file时,其SContext将是

#sysadm_devpts_t:s0。如果没有这一条TT,则将使用fs_use_trans设置的SContext:

#u:object_r:devpts:s0 注意,和前面的TT比起来,这里并不是以目录为参考对象,而是

#以FileSystem为参考对象

fs_use_trans tmpfs u:object_r:tmpfs:s0;

fs_use_trans devtmpfs u:object_r:device:s0;

fs_use_trans shm u:object_r:shm:s0;

fs_use_trans mqueue u:object_r:mqueue:s0;

到此,我们介绍了fs_use_xattrfs_use_taskfs_use_trans,那么这三种打标签的方法是否涵盖了所有情况呢?答案肯定是否,因为我们还有一个兄弟没出场呢。

[external/sepolicy/genfs_context]

#genfs中的gen为generalized之意,即上述三种情况之外的死货,就需要使用genfscon

#关键词来打labeling了。一般就是/目录,proc目录,sysfs等

genfscon rootfs / u:object_r:rootfs:s0

genfscon proc / u:object_r:proc:s0

genfscon proc /net/xt_qtaguid/ctrl u:object_r:qtaguid_proc:s0

......

到此,绝大部分能想到的死货怎么打标签就介绍完了。

(4)  给网络数据包/端口打标签

不过,从知识完整性角度看,还有对网络数据包打标签的工作,这也是SELinux新增的功能。不过,它涉及到与iptables相关的工作,所以笔者也不想过多讨论。在SEAndroid中,selinux-network.sh脚本就是来干这个事情的,其内容如图4所示:

4 网络数据包打标签

由图4可以看出,SEAndroid暂时也没放开网络数据包打标签的功能。"-j SECMARK --selctx SContext"iptables(需要支持SELinux功能)新增选项,用来给各种数据包也打上标签。

除了数据包外,还可以给端口打标签,这是由portcon关键词来完成的。此处不再详述,读者有个概念即可。

 

2.3  Security Level和MLS

(1)  Security Level

上文介绍的TERBAC基本满足了“平等社会”条件下的权限管理,但它无法反映现实社会中等级的概念。为此,SELinux又添加了一种新的权限管理方法,即Multi-Lever Security,多等级安全。多等级安全信息也被添加到SContext中。所以,在MLS启用的情况下(注意,你可以控制SELinux启用用MLS还是不启用MLS),完整的SContext

  • MLS未启用前:user_u:role_r:type_t
  • MLS启用后,user:role:type:sensitivity[:category,...]- sensitivity [:category,...]

看,MLS启用后,SContext type后面的字段变得非常复杂,看着有些头晕(至少笔者初学它时是这样的)。下面马上来解释它。

[Security-level解析]

|-->low security level<--| -  |-->high security level<--|

sensitivity[:category,...]  - sensitivity [:category,...]

上述字符串由三部分组成:

  •  low security level:表明当前SContext所对应的东西(活的或死的)的当前(也就是最小)安全级别。
  • 连字符“-”,表示range
  • high security level:表明当前SContext所对应的东西(活的或死的)的最高可能获得的安全级别(英文叫clearance,不知道笔者的中文解释是否正确)。

security level由两部分组成,先来看第一部分由sensitivity关键字定义的sensitivity,其用法见如下例子:

[例子9]

#用sensitivity定义一个sens_id,alias指定别名。

sensitivity sens_id alias alias_id [ alias_id ];

#比如:

sensitivity s0 alias unclassified

sensitivity s1 alias seceret

sensitivity s2 alias top-seceret

.....

#Question:从alias看,似乎so的级别<s1的级别<s2的级别。但是

#alias并不是sensitivity的必要选项,而且名字可以任取。

#在SELinux中,真正设置sensitivity级别的是由下面这个关键词表示

dominance {s0 s1 s2.....sn}

#在上述dominance语句中,括号内最左边的s0级别最低,依次递增,直到最右边的sn级别最高

再来看security level第二部分,即category关键字及用法,如例10所示:
[例子10]

#category cat_id alias alias_id;

#比如:

category c0

category c1 #等

#category和sensitivity不同,它定义的是类别,类别之间是没有层级关系的。比如,

#小说可以是一中cagetory,政府公文是另外一种category,

SEAndroid中:

  • sensitivity只定义了s0
  • category定义了从c0c1023,共1024category

senstivitycategory一起组成了一个security level(以后简称SLevel),SLevel由关键字level声明,如下例所示:

[例子11]

#level sens_id [ :category_id ];

#注意,SLevel可以没有category_id。看一个例子:

#sensitivity为s0,category从c0,c1,c2一直到c255,注意其中的.号

level s0:c0.c255;

#没有category_id,如:

level s0

Role类似,SL1SL2之间的关系有:

  • dom:如果SL1 dom SL2的话,则SL1sensitivity >= SL2senstivitySL1category包含SL2category(Category of SL1Category of SL2的超集)

例如:

SL1="s2:c0.c5" dom SL2="s0:c2,c3"

  • domby:和dom相反。
  • eqsensitivity相等,category相同。
  • incomp:不可比。sensitivity不可比,category也不可比。

现在回过头来看SContext,其完整格式为:

user:role:type:sensitivity[:category,...]- sensitivity [:category,...]

#前面例子中,我们看到Android中,SContext有:

u:r:init:s0 #在这种case中,Low SLevel等于High SLevel,而且SLevel没有包含Category

好了,知道了SLevel后,下面来看看它如何在MAC中发挥自己的力量。和constrain类似,MLS在其基础上添加了一个功能更强大的mlsconstrain关键字。

(2)  mlsconstrain和no read down/write up

mlsconstrain语法和constrain一样一样的:

mlsconstrain class perm_set expression;

constrain不一样的是,expression除了u1,u2,r1,r2,t1,t2外还新增了:

  • l1,l2:小写的Ll1表示源的low senstivity levell2表示targetlow sensitivity
  • h1,h2:小写的Hh1表示源的high senstivity levelh2表示targethigh sensitivity
  • lh的关系,包括dom,domby,eqincomp

mlsconstrain只是一个Policy语法,那么我们应该如何充分利用它来体现多层级安全管理呢?来看图5

5  MLS的作用

MLS在安全策略上有一个形象的描述叫no write downno read up

  • 高级别的东西不能往低级别的东西里边写数据:这样可能导致高级别的数据泄露到低级别中。如图4中,Process的级别是Confidential,它可以往同级别的File B中读写数据,但是只能往高级别的File A(级别是Secret)里边写东西。
  • 高级别的东西只能从低级别的东西里边读数据:比如Process可以从File CFile D中读数据,但是不能往File CFile D上写数据。

反过来说:

1 低级别的东西只能往高级别的东西里边写数据

-----我和小伙伴们解释这一条的时候,小伙伴惊呆了,我也惊呆了。他们的想法是”低级别往高级别里写,岂不是把数据破坏了?“。晕!这里讨论的是泄不泄密的问题,不是讨论数据被破坏的事情。破坏就破坏了,只要没泄密就完了。

2 低级别的东西不能从高级别的东西那边读数据

(3)  MLS in SEAndroid

再来看看SEAndroid中的MLS

  • 首先,系统中只有一个sensitivity level,即s0
  • 系统中有1024category,从c0c1023

读者通过mmm external/sepolicy --just-print可以打印出sepolicymakefile执行情况,其中有这样的内容:

#m4用来处理Policy文件中的宏

m4 -D mls_num_sens=1 -D mls_num_cats=1024

external/sepolicy/mls文件中有:

[external/sepolicy/mls]

#SEAndroid定义的两个和MLS相关的宏,位于mls_macro文件中

gen_sens(mls_num_sens)  #mls_num_sens=1

gen_cats(mls_num_cats)  #mls_num_cats=1024

#下面这个宏生成SLevel

gen_levels(mls_num_sens,mls_num_cats)

没必要解释上面的宏了,最终的policy.conf中(2.4节将介绍它是怎么来的),我们可以看到:

[out/target/product/generic/obj/ETC/sepolicy_intermediates/policy.conf]

sensitivity s0;

dominance { s0  }

category c0;

......#目前能告诉大家的是,policy.conf文件中,宏,attribute等都会被一一处理喔!

category c1023

level s0:c0.c1023; #定义SLevel

#SEAndroid中,mls_systemlow宏取值为s0

#mls_systemhigh宏取值为s0:c0.c1023

user u roles { r } level s0 range s0 - s0:c0.c1023; #定义u

最后,来看一下mlsconstain的例子:

[例子12]

mlsconstrain dir search

(( l1 dom l2 ) or

(( t1 == mlsfilereadtoclr ) and ( h1 dom l2 )) or

( t1 == mlsfileread ) or

( t2 == mlstrustedobject ));

#上述标粗体的都是attribute

不解释!

2.4  编译安全策略文件

到此,SELinux Policy语言中的基本要素都讲解完毕,相信读者对着真实的策略文件再仔细研究下就能彻底搞明白。

不过,我们前面反复提到的安全策略文件到底是什么?我们前面看到的例子似乎都是文本文件,难道就它们是安全策略文件吗?

拿个例子说事,来看图6Android的策略文件:

6  Android策略文件

Android中,SELinux的安全策略文件如图6所示。这么多文件,如何处理呢?来看图7

7  SElinux安全配置文件生成

由图7可知:

  • 左边一列代表安全配置的源文件。也即是大家在图6中看到的各种te文件,还有一些特殊的文件,例如前文提到的initial_sidinitial_sid_contextsaccess_vectorsfs_use,genfs_contexts等。在这些文件中,我们要改的一般也是针对TE文件,其他文件由于和kernel内部的LSM等模块相关,所以除了厂家定制外,我们很难有机会去修改。
  • 这些文件都是文本文件,它们会被组合到一起(图7中是用cat命令,不同平台处理方法不相同,但大致意思就是要把这些源文件的内容搞到一起去)。
  • 搞到一起后的文件中有使用宏的地方,这时要利用m4命令对这些宏进行拓展。m4命令处理完后得到的文件叫policy.conf。前面我们也见过这个文件了,它是所有安全策略源文件的集合,宏也被替换。所以,读者可以通过policy.conf文件查看整个系统的安全配置情况,而不用到图6中那一堆文件中去找来找去的。
  • policy.conf文件最终要被checkpolicy命令处理。该命令要检查neverallow是否被违背,语法是否正确等。最后,checkpolicy会将policy.conf打包生成一个二进制文件。在SEAndroid中,该文件叫sepolicy,而在Linux发行版本上,一般叫policy.26等名字。26表示SELinux的版本号。
  • 最后,我们再把这个sepolicy文件传递到kernel LSM中,整个安全策略配置就算完成。

提示:请读者务必将上述步骤搞清楚。

8所示为SEAndroidsepolicy makefile的执行情况:

8  sepolicy makefile执行情况

看明白了吗?

提示

想知道如何打印make命令的执行情况?请使用“--just-print”选项

进阶阅读

1)上述做法是将所有源文件打包生成一个单一的安全策略文件,这种方式叫Monolithic

     policy。显然,在什么都模块化的今天,这种方式虽然用得最多,但还是比较土。

     SELinux还支持另外一种所谓的模块化Policy。这种PolicyBase PolicyModule

     Policy两个。BasePolicy为基础,先加载,然后可以根据情况动态加载Module Policy

     目前SEAndroid还没有该功能,不过以后可能会支持。相信有了它,开发定制企业级

     安全管理系统就更方便些。

2  安全策略源文件非常多。基本上,我们都会在一个参考源文件上进行相应修改,

     而不会完全从头到尾都自己写。所以,在发行版上有一个Reference Policy,里边

     涵盖了普适的,常用的策略。很明显,AOSP 4.4中的sepolicy也提供了针对Android

     平台的Reference Policy

2.5  拓展讨论

最后,作为拓展讨论,我们来看看SELinux作为一套复杂的系统安全模块增强,其实现架构如图9所示:

9  SELinux Component组成

其中:

  • Subject:代表发起操作的对象,一般是ProcessSELinux需要检查Subject是否满足权限要求
  • Object Manager:管理着Object及相应的SContextOM将向Access Vector Cache查询所要求的操作是否有权限。
  • AVC主要起一个加速的作用,它将缓存一些权限检查的结果。当相同的权限检查请求过来时,直接从AVC中返回所缓存的结果。
  • 如果AVC没有这条权限检查的结果,那么它将向Security Server去查询。SS内部保存有SePolicy,它可以根据SEPolicy计算出权限检查的结果。

9中所示的SELinux Component可以:

  • 上述这些模块全部运行在Kernel中,它们也是LSM SElinux的核心模块。
  • OMAVC可以存在于UserSpace中,这种caseSELinux awareapplication。说白了,就是一个使用SELinux的安全监管系统。在Android中,KernelUserspaceSELinux都使用了。对于userspaceSELinux相关app来说,需要使用开源动态库libselinux。在Android平台中,该库位于external/libselinuxUserspaceSElinux APP也会和Kernel中的LSM Selinux交互,所以不能在没有Kernel SELinux的系统中单独使用SELinux app

10展示了一个完整的SELinux系统结构:

10  SELinux系统结构

10比较复杂,很大的原因是它包含了其他Linux发行版本上的一些和SELinux相关的工具,我们从上往下看:

  • 最顶上,Reference Policy, checkmodule, semodule_package,semodule等讲得都是Policy编译相关的工具和参考文件。这些东西编译完后,会生成最右边那个圆柱体SELinux Policy
  • 中间的SELinux-aware APP,Linux Commands, policycoreutils, file Labeling utils, semanage等,都是Linux发行版中常用的SELinux管理工具。
  • SELinux-aware APP借助libselinux库,将最右边的SELinux Policy配置文件传递到kernel中。这其实是通过往系统一些特殊的文件中写数据来完成的。例如/selinux/sys/fs/selinux等。
  • 然后我们进入最下边的Kernel中的SElinux,它包含AVC,LSM挂钩的LSM HookSecurity Server等等。

2.6  参考文献介绍

SELinux比较复杂,对于初学者,建议看如下几本书:

1  SELinux NSA’s Open Source Security Enhanced Linux

下载地址:http://download.csdn.net/detail/innost/6947063

评价:讲得SELinux版本比较老,不包括MLS相关内容。但是它是极好的入门资料。如果你完全没看懂本文,则建议读本文。

2  SELinux by Example Using Security Enhanced Linux

 下载地址:http://download.csdn.net/detail/innost/6947093

评价:这本书比第1本书讲得SELinux版本新,包括MLS等很多内容,几乎涵盖了目前SELinux相关的所有知识。读者可跳过1直接看这本书。

3  The_SELinux_Notebook_The_Foundations_3rd_Edition

下载地址:http://download.csdn.net/detail/innost/6947077

评价:这是官方网站上下的文档,但它却是最不适合初学者读的。该书更像一个汇总,解释,手册文档。所以,请务必看完1或2的基础上再来看它。


posted @ 2017-03-17 07:54  张同光  阅读(469)  评论(0编辑  收藏  举报