HDU 5288 OO‘s sequence (技巧)

题目链接:http://acm.hdu.edu.cn/showproblem.php?

pid=5288


题面:

OO’s Sequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 985    Accepted Submission(s): 375


Problem Description
OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l<=i<=r) , that there's no j(l<=j<=r,j<>i) satisfy ai mod aj=0,now OO want to know
i=1nj=inf(i,j) mod 109+7.

 

Input
There are multiple test cases. Please process till EOF.
In each test case:
First line: an integer n(n<=10^5) indicating the size of array
Second line:contain n numbers ai(0<ai<=10000)
 

Output
For each tests: ouput a line contain a number ans.
 

Sample Input
5 1 2 3 4 5
 

Sample Output
23
 

Author
FZUACM
 

Source
 



解题:

    仅仅想到从左到右去找近期的不合法点。没想到从右往左找,那么答案就出来了。事实上数据范围那么小,就已经是一种暗示了。能够用数组记录下其最后出现的位置。注意扫的操作,要和记录同一时候进行。注意小心处理1的情况就好。


代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <map>
#include <vector>
#include <cmath>
#include <algorithm>
#define mod 1000000007
#define maxn 100010
#define LL long long 
using namespace std;
int t,le[100010],ri[100010],store[100010],pre[100010],tmp,root;
LL ans;
int main()
{
	while(~scanf("%d",&t))
	{
		ans=0;
		for(int i=1;i<=t;i++)
		  scanf("%d",&store[i]);
		for(int i=1;i<=t;i++)
			pre[i]=0;
		for(int i=1;i<=t;i++)
		{
           tmp=1;
		   root=sqrt((double)store[i]);
		     for(int j=1;j<=root;j++)
		     {
				 if(store[i]%j==0)
				 {
					 tmp=max(tmp,pre[j]+1);
					 tmp=max(tmp,pre[store[i]/j]+1);
				 }
		     }
		     le[i]=tmp;
		   pre[store[i]]=i;
		}
		for(int i=1;i<=t;i++)
			pre[i]=t+1;
		for(int i=t;i>=1;i--)
		{
			tmp=t;
            root=sqrt((double)store[i]);
			  for(int j=1;j<=root;j++)
			  {
				  if(store[i]%j==0)
				  {
					  tmp=min(pre[j]-1,tmp);
					  tmp=min(tmp,pre[store[i]/j]-1);
				  }
			  }
			  ri[i]=tmp;
			pre[store[i]]=i;
		}
		/*for(int i=1;i<=t;i++)
			cout<<i<<" "<<le[i]<<" "<<ri[i]<<endl;*/
		for(int i=1;i<=t;i++)
		{
				ans=(ans+1LL*(i-le[i]+1)*(ri[i]-i+1))%mod;
		}
		printf("%lld\n",ans);
	}
	return 0;
}


posted @ 2017-06-15 18:59  zsychanpin  阅读(204)  评论(0编辑  收藏  举报