集训第六周 古典概型 期望 D题 Discovering Gold 期望
Description
You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell of the cave can contain any amount of gold.
Initially you are in position 1. Now each turn you throw a perfect 6 sided dice. If you get X in the dice after throwing, you add X to your position and collect all the gold from the new position. If your new position is outside the cave, then you keep throwing again until you get a suitable result. When you reach the Nth position you stop your journey. Now you are given the information about the cave, you have to find out the expectednumber of gold you can collect using the given procedure.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case contains a blank line and an integer N (1 ≤ N ≤ 100) denoting the dimension of the cave. The next line contains N space separated integers. The ith integer of this line denotes the amount of gold you will get if you come to the ith cell. You may safely assume that all the given integers will be non-negative and no integer will be greater than 1000.
Output
For each case, print the case number and the expected number of gold you will collect. Errors less than 10-6 will be ignored.
Sample Input
3
1
101
2
10 3
3
3 6 9
Sample Output
Case 1: 101.0000000000
Case 2: 13.000
Case 3: 15
题意:从洞穴的第一点出发,开始掷骰子(六面),掷到的数字是多少就走多少步,每走一步,便会等到那个地点的财宝,最后求得到财宝的期望值
如:
1
101
期望=101*1=101
2
10 3
期望=10*1+3*1=13
3
3 6 9
期望=3*1+(6+9)*0.5+9*0.5=15
#include"iostream" #include"cstdio" #include"cstring" using namespace std; const int maxn=200; int v[maxn]; double dp[maxn]; int main() { int T,n,ca=0; cin>>T; while(T--) { cin>>n; for(int i=1;i<=n;i++) cin>>v[i]; memset(dp,0,sizeof(dp)); dp[n]=v[n]; for(int j=n-1;j>=1;j--) { dp[j]=v[j]; int cc=min(6,n-j); for(int k=1;k<=cc;k++) { dp[j]+=dp[j+k]*(1.0/cc); } } printf("Case %d: %f\n",++ca,dp[1]); } return 0; }