POJ - 2955 Brackets
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive.
The end-of-file is marked by a line containing the word “end” and should not be processed.
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
((())) ()()() ([]]) )[)( ([][][) end
6 6 4 0 6
这个好像比那个here更简单一些
题意:求出互相匹配的括号的总数
思路:一道区间DP,dp[i][j]存的是i~j区间内匹配最大个数网上多数的递推表达式不太懂都是这样的:
if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']') dp[i][j]=dp[i+1][j-1]+2;
dp[i][j]=max{dp[i][k]+dp[k+1][j]};
还是我自己写的好想一些:
dp[i][j]=max(dp[i][j-1], 2+dp[i][k-1]+dp[k+1][j-1]) i<=k<j dp[i][j-1]为和谁都不匹配 2+dp[i][k-1]+dp[k+1][j-1]为和k匹配
不过好像每次看i好一点,我是看的j所在的匹配情况,不过大同小异
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> using namespace std; const int N=105; char s[N]; int dp[N][N]; inline bool check(int i,int j){ return (s[i]=='['&&s[j]==']' || s[i]=='('&&s[j]==')'); } int main(){ while(~scanf("%s",s+1)){ if(s[1]=='e') break; memset(dp,0,sizeof(dp)); int n=strlen(s+1); ///还能这么测长度,长见识了 for(int i=n;i>=1;i--) for(int j=i+1;j<=n;j++){ dp[i][j]=dp[i][j-1]; ///和谁都不匹配 for(int k=i;k<j;k++) ///出现匹配 if(check(k,j)) dp[i][j]=max(dp[i][j],2+dp[i][k-1]+dp[k+1][j-1]); } printf("%d\n",dp[1][n]); } }
记忆化搜索方式
突然从这道题目里悟出区间的这种DP好想比之前的那种一般的DP还是和用记忆化搜索啊,因为这里涉及到区间了,所以划分成多个重复子问题更适合。
暂且这么理解吧
#include <iostream> #include <string.h> #include <stdio.h> #include <algorithm> using namespace std; const int MAXN=110; char str[MAXN]; int dp[MAXN][MAXN]; bool check(int i,int j){ return (str[i]=='('&&str[j]==')')||(str[i]=='['&&str[j]==']'); } int solve(int i,int j) { if(dp[i][j]!=-1) return dp[i][j]; if(j<=i) return dp[i][j]=0; dp[i][j]=solve(i+1,j); ///和谁都不匹配情况 for(int k=i+1;k<=j;k++) ///和其中一个匹配 if(check(i,k)) dp[i][j]=max(dp[i][j],2+solve(i+1,k-1)+solve(k+1,j)); return dp[i][j]; } int main() { while(scanf("%s",str)==1) { if(strcmp(str,"end")==0)break; memset(dp,-1,sizeof(dp)); int n=strlen(str); printf("%d\n",solve(0,n-1)); } return 0; }