Problem D: GCD
Time Limit: 1 Sec Memory Limit: 1280 MBSubmit: 194 Solved: 27
[Submit][Status][Web Board]
Description
Input
The first line is an positive integer T . (1<=T<= 10^3) indicates the number of test cases. In the next T lines, there are three positive integer n, m, p (1<= n,m,p<=10^9) at each line.
Output
Sample Input
1
1 2 3
Sample Output
1
HINT
题意简单!!!
斐波那契数列本身性质:
关于斐波那契数列矩阵快速幂基础知识:加法转矩阵快速幂(here)
由通式可得,斐波那契数列是个二阶递推数列,因此,存一个二维矩阵A,使得
Fn+3 =(Fn+2,Fn+1)=(Fn+1,Fn)*A;
有规律可得,A= 1 1
1 0
Fn+4=(Fn+3,Fn+2)=(Fn+1,Fn)*A*A =)=(Fn+1,Fn)*A^2;
#include<bits/stdc++.h> using namespace std; #define ll long long #define eps 1e-4 const int N=1e6+10,M=1e6+10; ///数组大小 ll MOD; struct Matrix { ll matri[2][2]; Matrix() { memset(matri,0,sizeof(matri)); } void init() { for(int i=0;i<2;i++) for(int j=0;j<2;j++) matri[i][j]=(i==j); } Matrix operator + (const Matrix &B)const { Matrix C; for(int i=0;i<2;i++) for(int j=0;j<2;j++) C.matri[i][j]=(matri[i][j]+B.matri[i][j])%MOD; return C; } Matrix operator * (const Matrix &B)const { Matrix C; for(int i=0;i<2;i++) for(int k=0;k<2;k++) for(int j=0;j<2;j++) C.matri[i][j]=(C.matri[i][j]+1LL*matri[i][k]*B.matri[k][j])%MOD; return C; } Matrix operator ^ (const ll &t)const { Matrix A=(*this),res; res.init(); ll p=t; while(p) { if(p&1)res=res*A; A=A*A; p>>=1; } return res; } }; int main() { Matrix base; ///初始化矩阵 base.matri[0][0]=1;base.matri[0][1]=1; base.matri[1][0]=1;base.matri[1][1]=0; int T; scanf("%d",&T); while(T--) { int n,m,p; scanf("%d%d%d",&n,&m,&p); int x=__gcd(n+2,m+2); MOD=p; if(x<=2) printf("%d\n",1%p); else { Matrix ans=base^(x-2); printf("%lld\n",(ans.matri[0][0]+ans.matri[0][1])%MOD); } } return 0; }