Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
#include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<iostream> #include<algorithm> #include<vector> #include<map> #include<queue> #include<stack> #include<string> #include<map> #include<set> #include<ctime> #define eps 1e-6 #define LL long long #define pii pair<string, int> #define rd(x) scanf("%d",&x) #define rd2(x,y) scanf("%d%d",&x,&y) using namespace std; char mmap[10][10]; bool vis[10]; int n,k; int dfs(int row,int coun){ //cout<<row<<' '<<coun<<"**********"<<endl; int sum=0; if(coun == k) return 1; if(row < n){ for(int i=0;i<n;i++){ if(vis[i]==false&&mmap[row][i] == '#'){ vis[i] = true; sum+=dfs(row+1,coun+1); vis[i] = false; } } sum+=dfs(row+1,coun); } return sum; } int main (){ while(~rd2(n,k)&&n!=-1&&k!=-1){ memset(vis,0,sizeof(vis)); for(int i=0;i<n;i++){ scanf("%s",mmap[i]); } printf("%d\n",dfs(0,0)); } return 0; }