Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
简单题,不说,直接代码。。。
#include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<iostream> #include<algorithm> #include<vector> #include<map> #include<queue> #include<stack> #include<string> #include<map> #include<set> #include<ctime> #define eps 1e-6 #define MAX 100005 #define INF 0x3f3f3f3f #define LL long long #define pii pair<int,int> #define rd(x) scanf("%d",&x) #define rd2(x,y) scanf("%d%d",&x,&y) #define rd3(x,y,z) scanf("%d%d%d",&x,&y,&z) ///map<int,int>mmap; ///map<int,int >::iterator it; using namespace std; struct Pos { int x; int step; Pos() {} Pos(int x,int step) { this->x=x,this->step=step; } }; bool vis[MAX]; int main () { int m,n; while(~rd2(m,n)) { memset(vis,0,sizeof(vis)); if(m>n) { printf("%d\n",m-n); continue; } queue<Pos> que ; que.push(Pos(m,0)); while(!que.empty()) { Pos temp=que.front(); if(temp.x==n) { printf("%d\n",temp.step); break; } que.pop(); if( temp.x-1>=0 && !vis[temp.x-1] ) { que.push(Pos(temp.x-1,temp.step+1)); vis[temp.x-1]=true; } if( temp.x+1<=MAX-5 && !vis[temp.x+1] ) { que.push(Pos(temp.x+1,temp.step+1)); vis[temp.x+1]=true; } if( temp.x<<1<=MAX-5 && !vis[temp.x<<1]) { que.push(Pos(temp.x*2,temp.step+1)); vis[temp.x<<1]=true; } } } return 0; }