Sweety

Practice makes perfect

导航

第七届 山东省ACM Fibonacci(暴力)

Posted on 2017-04-14 17:54  蓝空  阅读(199)  评论(0编辑  收藏  举报

Fibonacci

Time Limit: 2000MS Memory Limit: 131072KB

Problem Description

Fibonacci numbers are well-known as follow:

 

Now given an integer N, please find out whether N can be represented as the sum of several Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers.

Input

Multiple test cases, the first line is an integer T (T<=10000), indicating the number of test cases.

Each test case is a line with an integer N (1<=N<=109).

Output

One line per case. If the answer don’t exist, output “-1” (without quotes). Otherwise, your answer should be formatted as “N=f1+f2+…+fn”. N indicates the given number and f1, f2, … , fn indicating the Fibonacci numbers in ascending order. If there are multiple ways, you can output any of them.

Example Input

4567100

Example Output

5=56=1+57=2+5100=3+8+89

Hint

 

Author

 “浪潮杯”山东省第七届ACM大学生程序设计竞赛

题意:判断所给的数能不能由斐波那契数组成,如果能输出任意一种组成形式,不能输出-1

#include <stdio.h>
long long  num[10000];
long long count[100];
int main (){
	num[1]=1;
	num[2]=2;
	for (int i=3;i<=50;i++){
		num[i]=num[i-1]+num[i-2];
	}
	int n;
	scanf ("%d",&n);
	while (n--){
		long long T;
		scanf("%lld",&T);
		int k=0;
		long long c=T;
		for(int i=50;i>=0;i--){
			if (num[i]<=T&&T){
				count[k++]=num[i];
				T=T-num[i];
			}
		} 
		if (!T){
			printf ("%lld=",c);
			for (int i=k-1;i>0;i--){
				printf ("%lld+",count[i]);
			}
			printf ("%lld\n",count[0]);
		}
		else{
			printf ("-1");
		}
		
		
	} 
	
	return 0;
}