Description
WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:
- p, q, r, s, and t are WFFs
- if w is a WFF, Nw is a WFF
- if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
- p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
- K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.
|
w x | Kwx | Awx | Nw | Cwx | Ewx |
1 1 | 1 | 1 | 0 | 1 | 1 |
1 0 | 0 | 1 | 0 | 0 | 0 |
0 1 | 0 | 1 | 1 | 1 | 0 |
0 0 | 0 | 0 | 1 | 1 | 1 |
A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example,ApNp is a tautology because it is true regardless of the value of p. On the other hand,ApNq is not, because it has the value 0 for p=0, q=1.
You must determine whether or not a WFF is a tautology.
Input
Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.
Output
For each test case, output a line containing tautology or not as appropriate.
Sample Input
ApNp ApNq 0
Sample Output
tautology not
题意:
题意很简单,就是数学中的运算符运算;
第一种解法是运用了栈的思想,这样的话比较简单
#include<iostream> #include<stdio.h> #include<cstring> #include<stack> using namespace std; stack <bool> st; int p,q,r,s,t; void push(char c){//对于运算符压入栈顶 if(c=='p') st.push(p); else if(c=='q') st.push(q); else if(c=='r') st.push(r); else if(c=='s') st.push(s); else if(c=='t') st.push(t); return; } void f(char c){//对经判断之后的操作符进行运算函数 bool a,b; if(c=='K'){ a=st.top(); st.pop(); b=st.top(); st.pop(); st.push(a&&b); } else if(c=='A'){ a=st.top(); st.pop(); b=st.top(); st.pop(); st.push(a||b); } else if(c=='N'){ a=st.top(); st.pop(); st.push(!a); } else if(c=='C'){ a=st.top(); st.pop(); b=st.top(); st.pop(); st.push((!a)||b); } else if(c=='E'){ a=st.top(); st.pop(); b=st.top(); st.pop(); st.push(a==b); } return; } int main(){ char wff[110]; while(scanf("%s",wff)&&wff[0]!='0'){ int len=strlen(wff); bool flag=1; int i; for(p=0;p<=1;p++) { for(q=0;q<=1;q++) for(r=0;r<=1;r++) for(s=0;s<=1;s++) for(t=0;t<=1;t++) { for(i=len-1;i>=0;i--) { if(c=='p'||c=='q'||c=='r'||c=='s'||c=='t') push(wff[i]);//将当前字符压入栈 else f(wff[i]);//对栈顶进行操作,进行运算 } if(st.top()==0)//此时的top是最后的结果 flag=0; st.pop();//将最后的结果清空,以便下一种情况的遍历 } } if(flag) printf("tautology\n"); else printf("not\n"); } }
#include<stdio.h> #include<stdlib.h> #include<string.h> int state[5]; char s[205]; int l=0; int ind(){ char ch=s[l++]; //printf(""); switch(ch){ case 'p': case 'q': case 'r': case 's': case 't': return state[ch-'p']; case 'K': return ind()&ind(); case 'A': return ind()|ind(); case 'N': return !ind(); case 'C': return !ind()|ind(); case 'E': return ind()==ind(); } } int main(){ scanf("%s", s); while(s[0]!='0'){ int len=strlen(s); int mark=1; for(state[0]=0; state[0]<=1 && mark; state[0]++){ for(state[1]=0; state[1]<=1 && mark; state[1]++){ for(state[2]=0; state[2]<=1 && mark; state[2]++){ for(state[3]=0; state[3]<=1 && mark; state[3]++){ for(state[4]=0; state[4]<=1 && mark; state[4]++){ l=0; if(ind()==0) mark=0; } } } } } if(mark==1) printf("tautology\n"); else printf("not\n"); scanf("%s", s); } return 0; }