摘要:
综合题:floyed+二分答案+网络流判断。题意:1、K台机器,C头奶牛,M是每台机器处理奶牛的上限。 2、每头奶牛只能走到一台机器。 3、已知(K+C)的矩阵描述了彼此的距离(0表示INF),求在满足M的条件下,每头奶牛所走的最长距离的min。分析:1、首先,容易想到求出彼此之间的最短路。 2、真正要研究的是矩阵右上角的 K行*C列个点。由M可知,每行最多有M个数字。 3、容易想到以个数建边。即源点s与奶牛连边,容量为1;机器与汇点t连边,容量为M。 4、利用二分,不断逼近所求的最长距离的min,将所有奶牛到机器的路径与min比较,建图并判断最大流是否为C(每头牛... 阅读全文
摘要:
建图题。题意:1、M个猪圈,N个人来买猪,Mirko是农场主。 2、已知猪圈开始都上锁,Mirko不能动猪圈的猪。 3、客人依次来买猪,他们分别有A把猪圈的钥匙,从这些猪圈中买B头猪。 4、在每个客人走后,Mirko可以调整这些猪圈中猪的数量,来实现卖出更多的猪。然后锁上猪圈。Hint:Sample中第一个人买完后,把猪圈1和猪圈2中的猪(2头)全部放到猪圈2中。建图核心:如何判断哪些猪该调整 => 剩余猪的调整到将会再次被打开的猪圈 以顾客作为节点,超级源s连接没个猪圈的第一个顾客(如果某个顾客对多个猪圈来说是第一个购买,合并容量,e.g:Sample中,s与第一个人连... 阅读全文