Codeforces Global Round 7

A. Bad Ugly Numbers

题意:构造一个 $n$ 位数 $s$ 使其满足:$s$ 为正数,每一位不等于零,$s$ 不被每一位整除。

思路:就构造就行了,也没啥可说的。

#include <bits/stdc++.h>
#define pb(x) push_back(x)
#define mp(x, y) make_pair(x, y)
#define fast ios::sync_with_stdio(false)
#define mset(a, n) memset(a, n, sizeof(a))
#define forn(i, n) for (int i = 0; i < (n); ++i)
#define forab(i, a, b) for (int i = (a); i <= (b); ++i)
#define forba(i, b, a) for (int i = (b); i >= (a); --i)
#define db double
#define ll long long
#define endl '\n'
#define fi first
#define se second
 
using namespace std;
 
typedef pair<int, int> P;
 
inline int lowbit(int x) { return x & (-x); }
 
int main(){
    fast;
    int t;
    cin >> t;
    while (t--) {
        int n;
        cin >> n;
        if (n == 1){
            cout << "-1\n";
        } else {
            cout << "8";
            forn(i, n - 1){
                cout << "9";
            }
            cout << "\n";
        }
    }
    return 0;
}
View Code

 

B. Maximums

题意:现有一个长度为 $n$ 的数列 $a$ ,定义数列 $x_{i} = max(0, a_{1}...a_{i-1})$,当 $i = 1$时,$x_{1} = 0$,另定义数列 $b_{i} = a_{i} - x_{i}$。目前给定数列 $b$,求数列 $a$。

思路:维护当前最大值向后遍历就行了。

#include <bits/stdc++.h>
#define pb(x) push_back(x)
#define mp(x, y) make_pair(x, y)
#define fast ios::sync_with_stdio(false)
#define mset(a, n) memset(a, n, sizeof(a))
#define forn(i, n) for (int i = 0; i < (n); ++i)
#define forab(i, a, b) for (int i = (a); i <= (b); ++i)
#define forba(i, b, a) for (int i = (b); i >= (a); --i)
#define db double
#define ll long long
#define endl '\n'
#define fi first
#define se second
 
using namespace std;
 
typedef pair<int, int> P;
 
inline int lowbit(int x) { return x & (-x); }
 
const int N = 2e5 + 5;
ll b[N], ans[N], n;
 
int main(){
    fast;
    cin >> n;
    forab(i, 1, n){
        cin >> b[i];
    }
    ll maxx = -0x3f3f3f3f;
    ans[1] = b[1];
    maxx = max(ans[1], maxx);
    forab(i, 2, n){
        ans[i] = b[i] + maxx;
        maxx = max(maxx, ans[i]);
    }
    forab(i, 1, n){
        cout << ans[i];
        if (i != n)
            cout << " ";
    }
    cout << "\n";
    return 0;
}
View Code

 

C. Permutation Partitions

题意:感觉题目稍微有点绕,给定一个 $1-n$ 上的全排列,将这个全排列分成不相交的 $k$ 段,定义该划分的 $value$ 为各段最大值的和,求该全排列所有可能划分中 $value$ 的最大值和达到最大值的划分情况个数。

思路:读懂题目之后思路其实就出来了,$1-n$ 的全排列分成 $k$ 段,显然最大的 $value$ 为前 $k$ 大的数之和,至于满足情况的个数,从小到大记录前 $k$ 个数出现的位置,每次将答案乘以相邻两数位置之差就是答案,这题两发才过,第一发我模数写错了真是***了。

#include <bits/stdc++.h>
#define pb(x) push_back(x)
#define mp(x, y) make_pair(x, y)
#define fast ios::sync_with_stdio(false)
#define mset(a, n) memset(a, n, sizeof(a))
#define forn(i, n) for (int i = 0; i < (n); ++i)
#define forab(i, a, b) for (int i = (a); i <= (b); ++i)
#define forba(i, b, a) for (int i = (b); i >= (a); --i)
#define db double
#define ll long long
#define endl '\n'
#define fi first
#define se second
 
using namespace std;
 
typedef pair<int, int> P;
 
inline int lowbit(int x) { return x & (-x); }
 
const ll MOD = 1e9 + 7;
const ll mod = 998244353;
 
vector<ll> v;
 
int main(){
    fast;
    ll n, k;
    cin >> n >> k;
    ll ans = 0, cnt = 1;
    forab(i, 1, n){
        int x;
        cin >> x;
        if (x > (n - k)){
            v.push_back(i);
            ans += x;
        }
    }
    for (int i = 0; i < v.size() - 1; ++i) {
        cnt = cnt * (v[i + 1] - v[i]) % mod;
    }
    cout << ans << " " << cnt << "\n";
    return 0;
}
View Code

 

D1. Prefix-Suffix Palindrome (Easy version)

题意:给定字符串 $s$,要求构造字符串 $t$ 满足:$t$ 的长度不大于 $s$且为回文串,并且由 $s$ 的一个前缀和一个后缀(可以为空串)加和构成。

思路:首先求出 $s$ 中前后缀相等部分,之后对于剩余子串求最长回文子串即可(Manacher即可,顺便更新了一下模板)。

#include <bits/stdc++.h>
#define pb(x) push_back(x)
#define mp(x, y) make_pair(x, y)
#define fast ios::sync_with_stdio(false)
#define mset(a, n) memset(a, n, sizeof(a))
#define forn(i, n) for (int i = 0; i < (n); ++i)
#define forab(i, a, b) for (int i = (a); i <= (b); ++i)
#define forba(i, b, a) for (int i = (b); i >= (a); --i)
#define db double
#define ll long long
#define endl '\n'
#define fi first
#define se second
 
using namespace std;
 
typedef pair<int, int> P;
 
inline int lowbit(int x) { return x & (-x); }
 
const ll MOD = 1e9 + 7;
const ll mod = 998244353;
 
string Manacher(string &s) {
    string t = "$#";
    for (int i = 0; i < s.length(); ++i) {
        t += s[i];
        t += '#';
    }
 
    int ml = 0, p = 0, R = 0, M = 0;
 
    int len = t.length();
    vector<int> P(len, 0);
    for (int i = 0; i < len; ++i) {
        P[i] = R > i ? min(P[2 * M - i], R - i) : 1;
        while (t[i + P[i]] == t[i - P[i]]) ++P[i];
        if (i + P[i] > R) {
            R = i + P[i];
            M = i;
        }
        if (ml < P[i] && (i - P[i]) / 2 == 0) {
            ml = P[i];
            p = i;
        }
    }
 
    return s.substr((p - ml) / 2, ml - 1);
}
 
int main(){
    fast;
    int t;
    cin >> t;
    while (t--) {
        string s;
        cin >> s;
        int l = 0, r = s.size() - 1;
        while (s[l] == s[r] && l < r)
            ++l, --r;
        string pre = s.substr(0, l), suf = s.substr(r + 1);
        //cout << pre << " " << suf << "\n";
        string ss = s.substr(l, r - l + 1);
        string ex = Manacher(ss);
        reverse(ss.begin(), ss.end());
        string exx = Manacher(ss);
        //cout << ss << " " << ex << " " << exx << "\n";
        if (ex.length() > exx.length())
            cout << pre + ex + suf << "\n";
        else
            cout << pre + exx + suf << "\n";
    }
 
    return 0;
}
View Code

 

D2. Prefix-Suffix Palindrome (Hard version)

思路同上,一样的代码即可。

posted @ 2020-03-20 11:36  ZSsst  阅读(141)  评论(0编辑  收藏  举报