博客园 首页 私信博主 显示目录 隐藏目录 管理 动画

题解 【NOIP2014】解方程

题面

 

 

解析

这题的数据看起来似乎特别吓人。。。

但实际上,

这题非常好想。

只需要模一个大质数就行了(我模的是1e9+7)(实测有效)

另外,a要用快读读入,再一边模Mod(因为实在太大了)。

然后,秦九韶算法了解一下:

秦九韶算法

接下来,只需要枚举1~m的所有整数再判断就行了。

然而,这一切并没有结束...

这样的时间复杂度是O(n*m)

所以稍微有点常数就会被卡(惨痛的经验教训)

因此,我们要直接开long long,在最后模一下Mod就行了(不然会被卡)。

 

 

上AC代码:

 

 

#include <bits/stdc++.h>
#define ll long long
using namespace std;

const int Mod1=1e9+7,Mod2=1e9+9;
ll n,m,a1[1001],a2[1001];
ll ans[100001];

bool isroot(int x){
    ll ret1=0,ret2=0;
    for(int i=n;i;i--){
        ret1=((ret1+a1[i])*x)%Mod1;
    }
    ret1=(ret1+a1[0])%Mod1;
    return !ret1;
}

void read1(int k){
    ll x1=0,x2=0,f=1;
    char ch=getchar();
    while(ch>'9'||ch<'0'){
        if(ch=='-') f=-1;
        ch=getchar();
    }
    while(ch<='9'&&ch>='0'){
        x1=(ll)(x1*10+(ch-'0'))%Mod1;
        ch=getchar();
    }
    a1[k]=x1*f;
} 

void print(int x){
    if(x<0) putchar('-'),x=-x;
    if(x>9) print(x/10);
    putchar(x%10+'0');
}

int main(){
    scanf("%lld%lld",&n,&m);
    for(int i=0;i<=n;i++){
        read1(i);
    }
    for(int i=1;i<=m;i++){
        if(isroot(i)) ans[++ans[0]]=i;
    }
    print(ans[0]);
    printf("\n");
    for(int i=1;i<=ans[0];i++){
        print(ans[i]);
        printf("\n");
    }
    return 0;
}

 

 

 

posted @ 2019-03-04 19:12  Hastin  阅读(266)  评论(0编辑  收藏  举报