【noip 2015】提高组

先扔一份写的超级详细的题解。   -Day1-    -Day2-  

(感觉自己并没有什么写题解的必要啊……做点补充好了,顺便扔代码

D1T1.神奇的幻方

题目链接

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 using namespace std;
 5 int n,a[41][41];
 6 int main()
 7 {
 8     scanf("%d",&n);
 9     int mid=n/2+1,x=1,y=mid;
10     a[1][mid]=1;
11     for(int i=2;i<=n*n;i++)
12     {
13         if(x==1&&y!=n)x=n,y++;
14         else if(x!=1&&y==n)x--,y=1;
15         else if(x==1&&y==n)x++;
16         else
17         {
18             if(a[x-1][y+1])x++;
19             else x--,y++;
20         }
21         a[x][y]=i;
22     }
23     for(int i=1;i<=n;i++)
24     {
25         for(int j=1;j<=n;j++)
26             printf("%d ",a[i][j]);
27         printf("\n");
28     }
29     return 0;
30 }
View Code

D1T2.信息传递

题目链接

拓扑排序,找到最短环的长度。

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 using namespace std;
 5 const int N=200050;
 6 int n,to[N],in[N],ans=0x3f3f3f3f;
 7 bool f[N];
 8 int read()
 9 {
10     int x=0,f=1;char c=getchar();
11     while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
12     while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
13     return x*f;
14 }
15 int main()
16 {
17     n=read();
18     for(int i=1;i<=n;i++)
19         to[i]=read(),in[to[i]]++;
20     for(int i=1;i<=n;i++)
21         if(in[i]==0)in[to[i]]--;
22     for(int i=1;i<=n;i++)
23     {
24         if(in[i]==0||f[i])continue;
25         int st=i,ed=i,sum=0;
26         f[i]=true;
27         while(to[ed]!=st)
28             sum++,ed=to[ed],f[ed]=true;
29         ans=min(ans,sum+1); 
30     }
31     printf("%d",ans); 
32     return 0;
33 }
View Code

D1T3.斗地主

题目链接

一道真·很不想写的题。留个坑?回来填坑了。

比想象中的好写……其实就是dfs,vijos上的100组数据是真的有意思orz

注意A的转换,以及三带二不能带双王。

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<cstring>
 4 using namespace std;
 5 const int inf=0x3f3f3f3f;
 6 int T,n,x,y,ans,num[20],a[5]; 
 7 int read()
 8 {
 9     int x=0,f=1;char c=getchar();
10     while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
11     while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
12     return x*f;
13 }
14 int go()
15 {
16     bool f=false;
17     if(num[0]==2)f=true;
18     memset(a,0,sizeof(a));
19     for(int i=0;i<=13;i++)a[num[i]]++;
20     int sum=0;
21     while(a[4]&&a[2]>=2)a[4]--,a[2]-=2,f=false,sum++;
22     while(a[4]&&a[1]>=2)a[4]--,a[1]-=2,sum++;
23     while(a[4]&&a[2])a[4]--,a[2]--,f=false,sum++;
24     if(f)sum++,a[2]--;
25     while(a[3]&&a[2])a[3]--,a[2]--,sum++;
26     while(a[3]&&a[1])a[3]--,a[1]--,sum++;
27     return sum+a[1]+a[2]+a[3]+a[4];
28 }
29 void dfs(int step)
30 {
31     if(step>=ans)return;
32     int t=go();
33     ans=min(ans,t+step);
34     for(int i=2;i<=13;i++)
35     {
36         int next=i;
37         while(num[next]>=3)next++;
38         if(next-i>=2)
39         {
40             for(int j=i+1;j<=next-1;j++)
41             {
42                 for(int k=i;k<=j;k++)num[k]-=3;
43                 dfs(step+1);
44                 for(int k=i;k<=j;k++)num[k]+=3;
45             }
46         }
47     }
48     for(int i=2;i<=13;i++)
49     {
50         int next=i;
51         while(num[next]>=2)next++;
52         if(next-i>=3)
53         {
54             for(int j=i+2;j<=next-1;j++)
55             {
56                 for(int k=i;k<=j;k++)num[k]-=2;
57                 dfs(step+1);
58                 for(int k=i;k<=j;k++)num[k]+=2;
59             }
60         }
61     }
62     for(int i=2;i<=13;i++)
63     {
64         int next=i;
65         while(num[next]>=1)next++;
66         if(next-i>=5)
67         {
68             for(int j=i+4;j<=next-1;j++)
69             {
70                 for(int k=i;k<=j;k++)num[k]--;
71                 dfs(step+1);
72                 for(int k=i;k<=j;k++)num[k]++;
73             }
74         }
75     }
76 }
77 int main()
78 {
79     T=read();n=read();
80     while(T--)
81     {
82         memset(num,0,sizeof(num));
83         for(int i=1;i<=n;i++)
84         {
85             x=read();y=read();
86             if(x==1)x=13;
87             else if(x)x--; 
88             num[x]++;
89         }
90         ans=inf;
91         dfs(0);
92         printf("%d\n",ans);
93     }
94     return 0;
95 }
View Code

D2T1.跳石头

题目链接

其实我第一次看到这道题的时候它叫河中跳房子……

先二分出答案,再判断答案是否合法(即需要移走的岩石数是否小于等于M

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 using namespace std;
 5 int len,n,m,ans,a[50010];
 6 int read()
 7 {
 8     int x=0,f=1;char c=getchar();
 9     while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
10     while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
11     return x*f;
12 }
13 bool check(int mid)
14 {
15     int base=0,num=0;
16     for(int i=1;i<=n+1;i++)
17     {
18         if(a[i]-base<mid)num++;
19         else base=a[i];
20     }
21     return num<=m;
22 }
23 int main()
24 {
25     len=read();n=read();m=read();
26     for(int i=1;i<=n;i++)a[i]=read();
27     a[n+1]=len;
28     int l=1,r=len;
29     while(l<=r) 
30     {
31         int mid=(l+r)>>1;
32         if(check(mid))ans=mid,l=mid+1;
33         else r=mid-1; 
34     }
35     printf("%d",ans);
36     return 0;
37 }
View Code

D2T2.子串

题目链接

DP状态转移方程及解析详见开头题解(其实只是因为懒

这里提供自己写的一份滚动数组版本的代码。

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 using namespace std;
 5 const int modd=1000000007;
 6 const int N=1005;
 7 const int M=205;
 8 int n,m,K,f[2][M][M],s[2][M][M];
 9 char a[N],b[M];
10 int read()
11 {
12     int x=0,f=1;char c=getchar();
13     while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
14     while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
15     return x*f;
16 }
17 int main()
18 {
19     n=read();m=read();K=read();
20     scanf("%s%s",a,b);
21     s[0][0][0]=s[1][0][0]=1;
22     for(int i=1;i<=n;i++)
23     {
24         int ii=i%2;
25         for(int j=1;j<=m;j++)
26             if(a[i-1]==b[j-1])
27                 for(int k=1;k<=min(j,K);k++)
28                 {
29                     f[ii][j][k]=(s[ii^1][j-1][k-1]+f[ii^1][j-1][k])%modd;
30                     s[ii][j][k]=(s[ii^1][j][k]+f[ii][j][k])%modd;
31                 }
32             else
33                 for(int k=1;k<=min(j,K);k++)
34                 {
35                     f[ii][j][k]=0;
36                     s[ii][j][k]=s[ii^1][j][k];
37                 }
38     }
39     printf("%d",s[n%2][m][K]);
40     return 0;
41 }
View Code

D2T3.运输计划

题目链接

我们的大体思路依然是二分答案 → 判断是否合法。

首先,建树,dfs一发。因为我们后面需要树上倍增求最近公共祖先,所以要把一些会用到的信息先处理好。

需要特别注意的是,我们用v[i]代表结点i与其父亲结点的连边的权值

然后,我们把每个运输计划起点、终点的LCA以及路径长度先预处理出来。

对于二分出来的每个ans,我们可能需要将一条边边权赋为0来使所有方案的路径长度都小于或等于ans。倘若ans合法,则这条边满足以下条件:位于所有路径长度大于ans的计划的路径交集里,且权值大于路径长度最长的那条边-ans的值。否则ans不合法。

我们选择用sum数组维护树上前缀和来求交集,sum[i]代表结点i与其父亲结点的连边在所有路径长度大于ans的计划中出现的次数。若sum[i]=路径长度大于ans的计划的数量,则结点i与其父亲结点的连边在交集里。二分答案之后的判定过程为:O(m)扫一遍方案,对于所有路径长度大于我们二分出来的ans的方案,起点、终点sum+1,他们的LCAsum-2,然后再求前缀和。至于为什么要这么做……画图易得:如果结点i与其父亲结点的连边在方案x中,则方案x的起点或终点有且只有一个在结点i的子树内。然后就很简单明了了

具体实现看代码咯。

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 using namespace std;
 5 const int N=700010;
 6 int n,m,cnt,a,b,t;
 7 int head[N],fa[N],deep[N],dis[N],x[N][20],st[N],ed[N],lca[N],dist[N],sum[N],v[N];
 8 bool f[N];
 9 struct edge{int next,to,w;}e[N];
10 int read()
11 {
12     int x=0,f=1;char c=getchar();
13     while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
14     while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
15     return x*f;
16 }
17 void insert(int u,int v,int w)
18 {
19     cnt++;e[cnt].to=v;e[cnt].w=w;e[cnt].next=head[u];head[u]=cnt;
20 }
21 void dfs(int k)
22 {
23     f[k]=true;
24     for(int i=1;(1<<i)<=deep[k];i++)
25         x[k][i]=x[x[k][i-1]][i-1];
26     for(int i=head[k];i;i=e[i].next)
27     {
28         if(!f[e[i].to])
29         {
30             x[e[i].to][0]=k;
31             deep[e[i].to]=deep[k]+1; 
32             v[e[i].to]=e[i].w;
33             dis[e[i].to]=dis[k]+e[i].w;
34             dfs(e[i].to);
35         }
36     }
37 }
38 int find(int ri,int rj)
39 {
40     if(deep[ri]<deep[rj])swap(ri,rj);
41     int d=deep[ri]-deep[rj]; 
42     for(int i=0;(1<<i)<=d;i++)
43         if((1<<i)&d)ri=x[ri][i];
44     if(ri==rj)return ri;
45     for(int i=16;i>=0;i--)
46         if((1<<i)<=deep[rj]&&x[ri][i]!=x[rj][i])
47             ri=x[ri][i],rj=x[rj][i];
48     return x[ri][0];
49 }
50 void query(int k)
51 {
52     for(int i=head[k];i;i=e[i].next)
53         if(e[i].to!=x[k][0])
54         {
55             query(e[i].to);
56             sum[k]+=sum[e[i].to];
57         }
58 }
59 bool check(int ans)
60 {
61     int cntt=0,cutt=0;
62     for(int i=1;i<=n;i++)sum[i]=0;
63     for(int i=1;i<=m;i++)
64         if(dist[i]>ans)
65         {
66             cntt++;cutt=max(cutt,dist[i]-ans);
67             sum[st[i]]++;sum[ed[i]]++;sum[lca[i]]-=2;
68         }
69     query(1);
70     for(int i=1;i<=n;i++)
71         if(sum[i]==cntt&&v[i]>=cutt)return true;
72     return false;
73 }
74 int main()
75 {
76     n=read();m=read();
77     for(int i=1;i<n;i++)
78     {
79         a=read();b=read();t=read();
80         insert(a,b,t);insert(b,a,t);
81     }
82     dfs(1);
83     for(int i=1;i<=m;i++)
84     {
85         st[i]=read();ed[i]=read();
86         lca[i]=find(st[i],ed[i]);
87         dist[i]=dis[st[i]]+dis[ed[i]]-2*dis[lca[i]];
88     }
89     int L=0,R=0;
90     for(int i=1;i<=m;i++)R=max(R,dist[i]);
91     while(L<=R)
92     {
93         int mid=(L+R)>>1;
94         if(check(mid))R=mid-1;
95         else L=mid+1;
96     }
97     printf("%d\n",L);
98     return 0;
99 }
View Code
posted @ 2017-07-10 20:23  Zsnuo  阅读(418)  评论(0编辑  收藏  举报