day 26 (configparser + logging + collections) 模块

configparser模块

该模块适用于配置文件的格式与windows ini文件类似,可以包含一个或多个节(section),每个节可以有多个参数(键=值)。

创建文件

来看一个好多软件的常见文档格式如下:

复制代码
[DEFAULT]    #  全局的组(组长) ,  下面的属性也是全局属性
ServerAliveInterval = 45
Compression = yes
CompressionLevel = 9
ForwardX11 = yes
  
[bitbucket.org]    自定义的组名
User = hg        自定义的option
  
[topsecret.server.com]    自定义组名
Port = 50022
ForwardX11 = no
复制代码

如果想用python生成一个这样的文档怎么做呢?

复制代码import configparser    #首先导入configparser模块  
config = configparser.ConfigParser()  #实例化一个对象

config["DEFAULT"] = {'ServerAliveInterval': '45',    #根据创建的对象来设置组名和option。
'Compression': 'yes',          DEFAULT,在配置文件中有关键词的作用。(生命全局) 'CompressionLevel': '9', 'ForwardX11':'yes' } config['bitbucket.org'] = {'User':'hg'} config['topsecret.server.com'] = {'Host Port':'50022','ForwardX11':'no'} with open('example.ini', 'w') as configfile:    最后一步打开文件,写入文件。否则不会生效 config.write(configfile)
复制代码

查找文件

复制代码
import configparser

config = configparser.ConfigParser()

#---------------------------查找文件内容,基于字典的形式

print(config.sections())        #  []    #得到了一个空列表,因为没有读取文件

config.read('example.ini')

print(config.sections())        #   ['bitbucket.org', 'topsecret.server.com']  #这一次读取了文件,所以打印出所有的组名

print('bytebong.com' in config) # False    #判断组名是否在config这个对象中
print('bitbucket.org' in config) # True


print(config['bitbucket.org']["user"])  # hg    #打印相应组名中的option的值

print(config['DEFAULT']['Compression']) #yes

print(config['topsecret.server.com']['ForwardX11'])  #no


print(config['bitbucket.org'])          #<Section: bitbucket.org>   #说明每一个组名是一个可迭代对象

for key in config['bitbucket.org']:     # 注意,有default会默认default的键  #除了自身的optinon还会有全局的option
    print(key)

print(config.options('bitbucket.org'))  # 同for循环,找到'bitbucket.org'下所有键

print(config.items('bitbucket.org'))    #找到'bitbucket.org'下所有键值对

print(config.get('bitbucket.org','compression')) # yes       get方法Section下的key对应的value
复制代码

增删改操作

复制代码
import configparser

config = configparser.ConfigParser()

config.read('example.ini')

config.add_section('yuan')    在添加组名前,必须读取文件



config.remove_section('bitbucket.org')    删除组名
config.remove_option('topsecret.server.com',"forwardx11")    删除组名对应的 option


config.set('topsecret.server.com','k1','11111')    找到对应组的option ,有则改之,无则添加
config.set('yuan','k2','22222')

config.write(open('new2.ini', "w"))    想要生效,必须写入文件

 

logging模块

logging 不会帮你自动添加日志的内容

函数式简单配置

import logging  
logging.basicConfig(level = logging.DEBUG)    #加这一行的话默认全部打印,不加会默认从warning模式开始打印 logging.debug('debug message') logging.info('info message') logging.warning('warning message') logging.error('error message') logging.critical('critical message')

默认情况下Python的logging模块将日志打印到了标准输出中,且只显示了大于等于WARNING级别的日志,这说明默认的日志级别设置为WARNING(日志级别等级CRITICAL > ERROR > WARNING > INFO > DEBUG),默认的日志格式为日志级别:Logger名称:用户输出消息。

灵活配置日志级别,日志格式,输出位置:

复制代码
import logging  
logging.basicConfig(level=logging.DEBUG,  
                    format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',  
                    datefmt='%a, %d %b %Y %H:%M:%S',  
                    filename='/tmp/test.log',  
                    filemode='w')  
  
logging.debug('debug message')  
logging.info('info message')  
logging.warning('warning message')  
logging.error('error message')  
logging.critical('critical message')
复制代码

编码格式不能设置

不能同时输出到文件和屏幕

配置参数:

复制代码
logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有:

filename:用指定的文件名创建FiledHandler,这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。
datefmt:指定日期时间格式。
level:设置rootlogger(后边会讲解具体概念)的日志级别
stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件(f=open(‘test.log’,’w’)),默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。

format参数中可能用到的格式化串:
%(name)s Logger的名字
%(levelno)s 数字形式的日志级别
%(levelname)s 文本形式的日志级别
%(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
%(filename)s 调用日志输出函数的模块的文件名
%(module)s 调用日志输出函数的模块名
%(funcName)s 调用日志输出函数的函数名
%(lineno)d 调用日志输出函数的语句所在的代码行
%(created)f 当前时间,用UNIX标准的表示时间的浮 点数表示
%(relativeCreated)d 输出日志信息时的,自Logger创建以 来的毫秒数
%(asctime)s 字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
%(thread)d 线程ID。可能没有
%(threadName)s 线程名。可能没有
%(process)d 进程ID。可能没有
%(message)s用户输出的消息
复制代码

logger对象配置

复制代码
import logging

logger = logging.getLogger()
# 创建一个handler,用于写入日志文件
fh = logging.FileHandler('test.log',encoding='utf-8') 

# 再创建一个handler,用于输出到控制台
ch = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setLevel(logging.DEBUG)

fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh) #logger对象可以添加多个fh和ch对象 
logger.addHandler(ch)

logger.debug('logger debug message')
logger.info('logger info message')
logger.warning('logger warning message')
logger.error('logger error message')
logger.critical('logger critical message')
复制代码

logging库提供了多个组件:Logger、Handler、Filter、Formatter。Logger对象提供应用程序可直接使用的接口,Handler发送日志到适当的目的地,Filter提供了过滤日志信息的方法,Formatter指定日志显示格式。另外,可以通过:logger.setLevel(logging.Debug)设置级别,当然,也可以通过

fh.setLevel(logging.Debug)单对文件流设置某个级别。

 

 简单配置
import logging
# 默认情况下 只显示 警告 及警告级别以上信息
# logging.basicConfig(level=logging.DEBUG,
# format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
# datefmt='%a, %d %b %y %H:%M:%S',
# filename = 'userinfo.log'
# )
# logging.debug('debug message') # debug 调试模式 级别最低
# logging.info('info message') # info 显示正常信息
# logging.warning('warning message') # warning 显示警告信息
# logging.error('error message') # error 显示错误信息
# logging.critical('critical message') # critical 显示严重错误信息

# 编码格式不能设置
# 不能同时输出到文件 和 屏幕

# 配置logger对象
import logging
logger = logging.getLogger() # 实例化了一个logger对象

fh = logging.FileHandler('test.log',encoding='utf-8') # 实例化了一个文件句柄
sh = logging.StreamHandler()

fmt = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(fmt) # 格式和文件句柄或者屏幕句柄关联
sh.setFormatter(fmt)
sh.setLevel(logging.WARNING)

# 吸星大法
logger.addHandler(fh) # 和logger关联的只有句柄
logger.addHandler(sh)
logger.setLevel(logging.DEBUG)

logger.debug('debug message') # debug 调试模式 级别最低
logger.info('info message') # info 显示正常信息
logger.warning('warning message') # warning 显示警告信息
logger.error('error message') # error 显示错误信息
logger.critical('critical message')


# logging
# logging 是记录日志的模块
# 它不能自己打印内容 只能根据程序员写的代码来完成功能
# logging模块提供5中日志级别,从低到高一次:debug info warning error critical
# 默认从warning模式开始显示
# 只显示一些基础信息,我们还可以对显示的格式做一些配置

# 简单配置 配置格式 basicCondfig
# 问题:编码问题,不能同时输出到文件和屏幕

# logger对象配置
# 高可定制化
# 首先创造logger对象
# 创造文件句柄 屏幕句柄
# 创造格式
# 使用文件句柄和屏幕句柄 绑定格式
# logger对象和句柄关联
# logger.setLevel
# 使用的时候 logger.debug










collections模块

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

namedtuple

们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

>>> p = (1, 2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

这时,namedtuple就派上了用场:

复制代码
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
复制代码

似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

#namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])

deque

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()pop()外,还支持appendleft()popleft(),这样就可以非常高效地往头部添加或删除元素。

OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict

复制代码
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
复制代码

意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']

defaultdict 

有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。

即: {'k1': 大于66 'k2': 小于66}
values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = {}

for value in  values:
    if value>66:
        if my_dict.has_key('k1'):
            my_dict['k1'].append(value)
        else:
            my_dict['k1'] = [value]
    else:
        if my_dict.has_key('k2'):
            my_dict['k2'].append(value)
        else:
            my_dict['k2'] = [value]
原生字典解决方法
from collections import defaultdict

values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = defaultdict(list)

for value in  values:
    if value>66:
        my_dict['k1'].append(value)
    else:
        my_dict['k2'].append(value)
defaultdict字典解决方法

使dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict

>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'
例2

 

Counter

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
其他详细内容 http://www.cnblogs.com/Eva-J/articles/7291842.html

 















 

posted @ 2018-04-23 14:23  Coca-Mirinda  阅读(166)  评论(0编辑  收藏  举报