「雅礼集训 2017」价

传送门

一个不太显然的最小割做法。。。

我们这么连边:源点向药物连 \(+ \infty - p_i\) 容量的边,药物向它对应的药材连 \(+ \infty\) 容量的边,药材向汇点连 \(+ \infty\) 容量的边。

用源点的流量减去最小割,再负回来就可以求出答案了。

怎么理解呢?割掉一条边表示不选其对应的药物或药材,我们发现最后的方案一定是完美匹配,也就是说我们肯定会让药物对应的药材出现重复,然后我们肯定不想割掉更多的边,也就是说只需求出最小割就好了。

参考代码:

#include <cstring>
#include <cstdio>

int min(int a, int b) { return a < b ? a : b; }
template < class T > void read(T& s) {
    s = 0; int f = 0; char c = getchar();
    while ('0' > c || c > '9') f |= c == '-', c = getchar();
    while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
    s = f ? -s : s;
}

const int _ = 1e5 + 5, __ = 2e6 + 5, INF = 2147483547, top = 1e7;

int tot = 1, head[_]; struct Edge { int v, w, nxt; } edge[__ << 1];
void Add_edge(int u, int v, int w) { edge[++tot] = (Edge) { v, w, head[u] }, head[u] = tot; }
void Link(int u, int v, int w) { Add_edge(u, v, w), Add_edge(v, u, 0); }

int n, ans, s, t, dep[_], cur[_];

int bfs() {
    static int hd, tl, Q[_]; hd = tl = 0;
    memset(dep, 0, sizeof (int) * (t - s + 1));
    dep[s] = 1, Q[++tl] = s;
    while (hd < tl) {
        int u = Q[++hd];
        for (int i = head[u]; i; i = edge[i].nxt) {
            int v = edge[i].v, w = edge[i].w;
            if (dep[v] == 0 && w > 0)
                dep[v] = dep[u] + 1, Q[++tl] = v;
        }
    }
    return dep[t] != 0;
}

int dfs(int u, int flow) {
    if (u == t) return flow;
    for (int& i = cur[u]; i; i = edge[i].nxt) {
        int v = edge[i].v, w = edge[i].w;
        if (dep[v] == dep[u] + 1 && w > 0) {
            int res = dfs(v, min(flow, w));
            if (res) { edge[i].w -= res, edge[i ^ 1].w += res; return res; }
        }
    }
    return 0;
}

int Dinic() {
    int res = 0;
    while (bfs()) {
        memcpy(cur, head, sizeof head);
        while (int d = dfs(s, INF)) res += d;
    }
    return res;
}

int main() {
    read(n), s = 0, t = n << 1 | 1;
    for (int x, y, i = 1; i <= n; ++i) {
        read(x); while (x--) read(y), Link(i, y + n, INF);
    }
    for (int x, i = 1; i <= n; ++i)
        read(x), ans += top - x, Link(s, i, top - x), Link(i + n, t, top);
    printf("%d\n", Dinic() - ans);
    return 0;
}
posted @ 2020-06-11 22:06  Sangber  阅读(156)  评论(0编辑  收藏  举报