「AHOI2014/JSOI2014」拼图
「AHOI2014/JSOI2014」拼图
传送门
看到 \(n \times m \le 10^5\) ,考虑根号分治。
对于 \(n < m\) 的情况,我们可以枚举最终矩形的上下边界 \(tp, bt\),那么我们发现最终矩形一定是由所有满足从第 \(tp\) 行到第 \(bt\) 行都是白格子的矩形顺次连接,并且两端再各自接上一个最大的前缀和一个最大的后缀构成的。
这个我们可以 \(O(m)\) 地算。
总复杂度就是 \(O(n^2m)\),也就是一个根号级别的。
对于 \(n \ge m\) 的情况,我们肯定不能还去枚举上下边界,但是此时我们可以对于每一个白色的格子,都找一个它上面的最远的一个白格子来构成一组上下边界,然后套用第一问的计算方法就好了。
预处理是 \(O(nm)\) 的,总复杂度是 \(O(nm^2)\),还是一个根号级别的。
还有一个坑点就是再找前、后缀矩形时要避免重复使用一个矩阵,所以我们还得记录次大值。
参考代码:
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
template < class T > inline T max(T a, T b) { return a > b ? a : b; }
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 1e5 + 5;
int s, n, m, l[_], r[_], lr[_], a[_], sum[_], up[_];
struct node { int first, second; } lmx, lmmx, rmx, rmmx;
inline int id(int i, int j) { return i != 0 && j != 0 ? (j - 1) * n + i : 0; }
inline int S(int x1, int y1, int x2, int y2) {
return sum[id(x2, y2)] - sum[id(x2, y1 - 1)] - sum[id(x1 - 1, y2)] + sum[id(x1 - 1, y1 - 1)];
}
inline int calc(int tp, int bt) {
int res = 0;
for (rg int i = 1; i <= s; ++i)
for (rg int ss = 0, j = l[i]; j <= r[i]; ++j) {
if (S(tp, j, bt, j) != 0) ss = 0; else ++ss;
res = max(res, (bt - tp + 1) * ss);
}
int mid = 0;
lmx = lmmx = rmx = rmmx = (node) { 0, 0 };
for (rg int i = 1; i <= s; ++i) {
int ls = 0, rs = 0;
for (rg int j = l[i]; j <= r[i]; ++j) if (S(tp, j, bt, j) != 0) break ; else ++ls;
for (rg int j = r[i]; j >= l[i]; --j) if (S(tp, j, bt, j) != 0) break ; else ++rs;
if (ls == lr[i]) mid += lr[i];
else {
if (ls > lmx.first) lmmx = lmx, lmx = (node) { ls, i };
else if (ls > lmmx.first) lmmx = (node) { ls, i };
if (rs > rmx.first) rmmx = rmx, rmx = (node) { rs, i };
else if (rs > rmmx.first) rmmx = (node) { rs, i };
}
}
if (lmx.second != rmx.second)
res = max(res, (bt - tp + 1) * (lmx.first + mid + rmx.first));
else {
res = max(res, (bt - tp + 1) * (lmmx.first + mid + rmx.first));
res = max(res, (bt - tp + 1) * (rmmx.first + mid + lmx.first));
}
return res;
}
inline void solve() {
read(s), read(n), m = 0;
for (rg int i = 1; i <= s; ++i) {
read(lr[i]), l[i] = m + 1, m += lr[i], r[i] = m;
for (rg int j = 1; j <= n; ++j)
for (rg int k = l[i]; k <= r[i]; ++k) scanf("%1d", a + id(j, k));
}
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= m; ++j)
sum[id(i, j)] = sum[id(i - 1, j)] + sum[id(i, j - 1)] - sum[id(i - 1, j - 1)] + a[id(i, j)];
int ans = 0;
if (n < m) {
for (rg int i = 1; i <= n; ++i)
for (rg int j = i; j <= n; ++j) ans = max(ans, calc(i, j));
} else {
for (rg int j = 1; j <= m; ++j) {
for (rg int p = 0, i = 1; i <= n; ++i) {
if (a[id(i, j)] != 0) {
for (rg int k = p + 1; k < i; ++k) up[id(k, j)] = p; p = i;
}
for (rg int k = p + 1; k <= n; ++k) up[id(k, j)] = p;
}
}
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= m; ++j)
if (a[id(i, j)] == 0) ans = max(ans, calc(up[id(i, j)] + 1, i));
}
printf("%d\n", ans);
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
int T; read(T);
while (T--) solve();
return 0;
}