HDU 4609 3-idiots
http://acm.hdu.edu.cn/showproblem.php?pid=4609
题意:给你一组数,问可以组成多少个三角形
分析:才知道原来有FFT这个算法。。。
看书还没有看懂,暂且知道有这么个东西
还是看牛人的题解http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html
#include <stdio.h> #include <iostream> #include <string.h> #include <algorithm> #include <math.h> using namespace std; const double PI = acos(-1.0); struct complex { double r,i; complex(double _r = 0,double _i = 0) { r = _r; i = _i; } complex operator +(const complex &b) { return complex(r+b.r,i+b.i); } complex operator -(const complex &b) { return complex(r-b.r,i-b.i); } complex operator *(const complex &b) { return complex(r*b.r-i*b.i,r*b.i+i*b.r); } }; void change(complex y[],int len) { int i,j,k; for(i = 1, j = len/2;i < len-1;i++) { if(i < j)swap(y[i],y[j]); k = len/2; while( j >= k) { j -= k; k /= 2; } if(j < k)j += k; } } void fft(complex y[],int len,int on) { change(y,len); for(int h = 2;h <= len;h <<= 1) { complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h)); for(int j = 0;j < len;j += h) { complex w(1,0); for(int k = j;k < j+h/2;k++) { complex u = y[k]; complex t = w*y[k+h/2]; y[k] = u+t; y[k+h/2] = u-t; w = w*wn; } } } if(on == -1) for(int i = 0;i < len;i++) y[i].r /= len; } const int MAXN = 400040; complex x1[MAXN]; int a[MAXN/4]; long long num[MAXN];//100000*100000会超int long long sum[MAXN]; int main() { int T; int n; scanf("%d",&T); while(T--) { scanf("%d",&n); memset(num,0,sizeof(num)); for(int i = 0;i < n;i++) { scanf("%d",&a[i]); num[a[i]]++; } sort(a,a+n); int len1 = a[n-1]+1; int len = 1; while( len < 2*len1 )len <<= 1; for(int i = 0;i < len1;i++) x1[i] = complex(num[i],0); for(int i = len1;i < len;i++) x1[i] = complex(0,0); fft(x1,len,1); for(int i = 0;i < len;i++) x1[i] = x1[i]*x1[i]; fft(x1,len,-1); for(int i = 0;i < len;i++) num[i] = (long long)(x1[i].r+0.5); len = 2*a[n-1]; //减掉取两个相同的组合 for(int i = 0;i < n;i++) num[a[i]+a[i]]--; //选择的无序,除以2 for(int i = 1;i <= len;i++) { num[i]/=2; } sum[0] = 0; for(int i = 1;i <= len;i++) sum[i] = sum[i-1]+num[i]; long long cnt = 0; for(int i = 0;i < n;i++) { cnt += sum[len]-sum[a[i]]; //减掉一个取大,一个取小的 cnt -= (long long)(n-1-i)*i; //减掉一个取本身,另外一个取其它 cnt -= (n-1); //减掉大于它的取两个的组合 cnt -= (long long)(n-1-i)*(n-i-2)/2; } //总数 long long tot = (long long)n*(n-1)*(n-2)/6; printf("%.7lf\n",(double)cnt/tot); } return 0; }