hdu portal(经典)

这是一道好题,让我又学了一个新的知识,离线算法+并查集

题意:先给出图,求存在多少路径使得花费T小于L,T的定义是u,v亮点的所有路径的最大边的最小值

Unfortunately, making a pair of portals will cost min{T} energies. T in a path between point V and point U is the length of the longest edge in the path

 

分析:首先将需要询问的Q进行排序,从小到大,因为L的值大的必定包含了L值小的路径。然后将两点各自的集合相乘num[u]*num[v],可以细想一下,假设与u已经合并的点有2个,与v合并的点有3个,那么u,v两集合所能组成的点就是2*3,因为两集合当前存储的边必定都小于T,而且必定都小于T,然后再讲u,v两集合合并,形成新的集合num[u]。对于边的查找,只需要找到小于等于T就可以停止查找,我们可以看一下,当u,v边长为L‘加入,且L'>L,若u,v在一个集合,则新通路为0,因为这两点的路径个数在以前加过了,若u,v在两个集合,则它们之间只有一条通路,可想而知,这条通路的权值为L‘,则无论组成的哪天连通两点的路径其最大边都为L’。

#include<stdio.h>
#include<algorithm>
using namespace std;
const int MAXN= 50010;

struct Edge
{
    int a,b,l;
} edge[MAXN];

struct Node
{
    int t,pos;
} pl[MAXN/5];

int father[MAXN/5],num[MAXN/5];
long long temp[MAXN/5];

bool cmp1(Edge a,Edge b)
{
    return a.l<b.l;
}

bool cmp2(Node a,Node b)
{
    return a.t<b.t;
}

void Make_set(int n)
{
    for (int i=1; i<=n; i++)
    {
        father[i]=i;
        num[i]=1;
    }
}

int Find(int x)
{
    int r=x;
    while(r!=father[r])//这里写错了。。
    {
        r=father[r];
    }
    if(r!=x) father[x]=r;
    return father[x];
}

int Union(int s1,int s2)
{
    int x=Find(s1);
    int y=Find(s2);
    if(x==y) return 0;
    long long  t=num[x]*num[y];
    num[x]+=num[y];//祖先代表该集合的总点数
    num[y]=0;//当成为一个集合只需要有个祖先就够了,其他的点为了避免重复均=0
    father[y]=x;
    return t;
}

int main()
{
    int n,m,q,i;
    while(scanf("%d%d%d",&n,&m,&q)!=EOF)
    {
        Make_set(n);
        for(i=0; i<m; i++)
        {
            scanf("%d%d%d",&edge[i].a,&edge[i].b,&edge[i].l);
        }
        sort(edge,edge+m,cmp1);
        for(int k=0; k<q; k++)
        {
            scanf("%d",&pl[k].t);
            pl[k].pos=k;
        }
        sort(pl,pl+q,cmp2);
        long long  ans=0;
        int pos=0;
        for(i=0; i<q; i++)
        {
            while(pos<m && edge[pos].l<=pl[i].t)
            {
                ans+=Union(edge[pos].a,edge[pos].b);
                pos++;
            }
            temp[pl[i].pos]=ans;
        }
        for(i=0; i<q; i++)
        {
            printf("%lld\n",temp[i]);
        }
    }
    return 0;
}
posted @ 2012-08-11 07:12  calmound  阅读(247)  评论(0编辑  收藏  举报